
Vaibbhav Taraate

ASIC Design
and Synthesis
RTL Design Using Verilog

ASIC Design and Synthesis

Vaibbhav Taraate

ASIC Design and Synthesis
RTL Design Using Verilog

123

Vaibbhav Taraate
1 Rupee S T
Pune, Maharashtra, India

ISBN 978-981-33-4641-3 ISBN 978-981-33-4642-0 (eBook)
https://doi.org/10.1007/978-981-33-4642-0

© Springer Nature Singapore Pte Ltd. 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Dedicated to my inspiration and my friend
who
wish to create many entrepreneurs in VLSI
design

Late Ajit Shelat

Ajit unfortunately passed away on 1st
September 2010 in car accident. Due to wish
of Ajit I have continued work in ASIC and
VLSI design.

Preface

The complexity of the ASIC designs has grown exponentially during the past
decade, and during this decade, we are experiencing the AI/ML-based designs and
AI-based processor cores to improve the performance of the designs.

The book is the origin of my thought process, and I have tried to document the
design concepts and practical issues with their solutions in this book.

The book mainly covers the ASIC design concepts, semi-custom ASIC design
flow and the case studies which can be helpful to the postgraduates and profes-
sionals. The book uses the Synopsys DC and PT commands and their use during the
synthesis and timing closure.

The physical design flow with the basic steps are covered so that readers can
have better understanding about the overall ASIC design cycle.

The book is organised in 20 chapters and covers the basics of ASIC design and
the concepts used during the RTL design to GDSII flow.

Chapter 1: Introduction: Understanding of the ASIC and programmable ASIC
plays an important role for the beginners and the experience engineers. The flow
can be full-custom, semi-custom, or programmable ASIC, and the major objective
of an engineer is to understand the design steps to plan the milestone delivery. The
objective of this chapter is to have the basic understanding of ASICs and what
should be the focus of the design team.

Chapter 2: ASIC Design Flow: The chapter discusses about the ASIC design
flow with few of the examples. The chapter is useful to understand about the logic
design (frontend design) flow, physical design (backend design) flow and the
design flow for the programmable ASICs.

Chapter 3: Let Us Build Design Foundation: Understanding of the design
abstraction at various levels is always useful during the RTL design and synthesis
phase. In this context, the chapter discusses about few of the elements and their use
during the design. Even the chapter discusses about the area improvement tech-
niques and role of the design elements in the ASIC design.

vii

Chapter 4: Sequential Design Concepts: The objective of this chapter is to have
discussion on the synchronous sequential circuits and asynchronous designs and
their use during the design phase. For better understanding, the chapter discusses
about the sequential elements and their use during design cycle.

Chapter 5: Important Design Considerations: The chapter is useful to under-
stand about the basics of timing, skew, latency, and other design considerations
such as parallelism and concurrency.

Chapter 6: Important Considerations for ASIC Designs: The chapter dis-
cusses about these techniques which are useful during the ASIC design architec-
tures and micro-architectures.

Chapter 7: Multiple Clock Domain Designs: The chapter discusses about the
multiple clock domain designs and strategies which can be useful during the
architecture and micro-architecture design.

Chapter 8: Low Power Design Considerations: The chapter is useful to
understand about the low power design techniques and important strategies which
are useful during the ASIC design.

Chapter 9: Architecture and Micro-architecture Design: The chapter dis-
cusses about the architecture and micro-architecture design concepts and strategies
which can be useful during the ASIC design phase.

Chapter 10: Design Constraints and SDC Commands: The chapter discusses
about the design constraints and the important SDC commands. SDC stands for the
Synopsys Design Constraints which is format and used to specify the design intent,
including timing, power and area constraints for a design!.

Chapter 11: Design Synthesis and Optimization Using RTL Tweaks: The
chapter discusses about the ASIC and FPGA synthesis and important concepts
useful during the design optimization ad even during RTL design phase.

Chapter 12: Synthesis and Optimization Techniques: The chapter is useful to
understand the different optimization techniques used during logic synthesis and
use of Synopsys DC commands while optimizing the design.

Chapter 13: Design Optimization and Scenarios: The chapter discusses about
the optimization for the speed and area with the practical design scenarios.

Chapter 14: Design for Testability: The DFT and the testability basics for the
ASIC design are discussed in this chapter.

Chapter 15: Timing Analysis: The STA and the performance improvement
techniques are discussed in this chapter.

Chapter 16: Physical Design: The chapter discusses about the physical design
flow and important issues during the physical design and how to overcome them.

Chapter 17: Case Study: Processor ASIC Implementation: The chapter dis-
cusses about the overall strategies which are useful during RTL to GDSII for the
moderately complex processors. Even the chapter discusses about the performance
improvement and the processor architecture strategies with and without pipelining
stages.

Chapter 18: Programmable ASIC: The FPGA and the role in prototyping is
discussed in this chapter. Even the chapter is useful to understand about the FPGA
flow and the FPGA synthesis.

viii Preface

Chapter 19: Prototyping Design: The design prototyping and the strategies are
discussed in this chapter. The use of multi-FPGA architecture, use of the multiple
FPGAs during prototyping and the prototyping flow is also discussed in this
chapter!

Chapter 20: Case Study: IP Design and Development: The IP development
and the strategies are discussed in this chapter. The H.264 architecture design and
strategies to implement the design is also included in this chapter!

The book is useful to understand the ASIC design flow and the important
design concepts useful during the various phases from the architecture design to
layout of the chip.

Pune, India Vaibbhav Taraate

Preface ix

Acknowledgements

The book is originated due to my extensive work in FPGA and ASIC design from
year 2000. The journey to develop the algorithms and architectures will continue in
future also and will be helpful to many professionals and engineers.

This book is possible due to help of many people. I am thankful to all the
participants to whom I taught the subject FPGA and ASIC design, synthesis, and
timing closure in few multinational corporations. I am thankful to all those entre-
preneurs, design/verification engineers, and managers with whom I worked in the
past almost around 20 years.

I am thankful to all my dearest friends and well-wishers for their constant
support. Especially, I am thankful to my teammates and all my family members for
their support and cooperation!.Thankful to Niraj and Deepesh for their support and
cooperation during the manuscript completion phase!

Finally, I am thankful to Springer Nature staff, especially Swati Meherishi,
Ashok Kumar, Rini Christy, and Jayarani for their great support during the various
phases of the manuscript.

Special thanks in advance to all the readers and engineers for buying, reading,
and enjoying this book!

xi

Contents

1 Introduction . 1
1.1 ASIC Design . 2
1.2 Types of ASIC . 2
1.3 Abstraction Levels . 6
1.4 Design Examples . 9
1.5 What We Should Know? . 9
1.6 Important Terms Used Throughout Design Cycle 11
1.7 Chapter Summary . 12

2 ASIC Design Flow . 13
2.1 ASIC Design Flow . 13

2.1.1 Logic Design . 16
2.1.2 Physical Design . 20

2.2 FPGA Design Flow . 22
2.3 Examples and Thought Process . 24
2.4 Design Challenges . 25
2.5 Chapter Summary . 25

3 Let Us Build Design Foundation . 27
3.1 Combinational Design Elements . 27
3.2 Logic Understanding and Use of Construct 28
3.3 Arithmetic Resources and Area . 29
3.4 Code Converter . 31

3.4.1 Binary to Gray Code Converter 31
3.4.2 Gray to Binary Code Converter 33

3.5 Multiplexers . 35
3.6 Cascading Stages of MUX Using Instantiation 38
3.7 Decoders . 40
3.8 Encoders . 43
3.9 Priority Encoders . 43

xiii

3.10 Strategies During ASIC Design . 46
3.11 Exercises . 47
3.12 Chapter Summary . 47

4 Sequential Design Concepts . 49
4.1 Sequential Design Elements . 49
4.2 Let Us Understand Blocking Versus Non-blocking

Assignments . 50
4.2.1 Blocking Assignments . 51
4.2.2 Reordering of the Blocking Assignments 51
4.2.3 Non-blocking Assignments . 53
4.2.4 Reordering of the Non-blocking Assignments 54

4.3 Latch-Based Designs . 55
4.4 Flip-Flop-Based Designs . 58
4.5 Reset Strategies . 60

4.5.1 Asynchronous Reset . 61
4.5.2 Synchronous Reset . 64

4.6 Frequency Divider . 65
4.7 Synchronous Design . 68
4.8 Asynchronous Design . 70
4.9 RTL Design and Verification for Complex Designs 70
4.10 Exercises . 71
4.11 Chapter Summary . 72

5 Important Design Considerations . 73
5.1 Timing Parameters . 74
5.2 Metastability . 75
5.3 Clock Skew . 75

5.3.1 Positive Clock Skew . 77
5.3.2 Negative Clock Skew . 79

5.4 Slack . 80
5.4.1 Setup Slack . 80
5.4.2 Hold Slack . 80

5.5 Clock Latency . 80
5.6 Area for the Design . 81
5.7 Speed Requirements . 81
5.8 Power Requirements . 82
5.9 What Are Design Constraints? . 83
5.10 Exercises . 83
5.11 Chapter Summary . 84

6 Important Considerations for ASIC Designs 85
6.1 Synchronous Design and Considerations 85
6.2 Positive Clock Skew and Impact on Speed 86
6.3 Negative Clock Skew and Impact on the Speed 88

xiv Contents

6.4 Clock and Network Latency . 89
6.5 Timing Paths in the Design . 89

6.5.1 Input to Reg Path . 90
6.5.2 Reg to Output Path . 90
6.5.3 Reg to Reg Path . 91
6.5.4 Input to Output Path . 91

6.6 Frequency Calculations . 91
6.7 What Is On-Chip Variations . 93
6.8 Exercises . 94
6.9 Chapter Summary . 94

7 Multiple Clock Domain Designs . 97
7.1 General Strategies for Multiple Clock Domain Designs 97
7.2 What Are Issues in the Multiple Clock Domain Design 98
7.3 Architecture Design Strategies . 99
7.4 Control Path and Synchronization . 102

7.4.1 Level or Multiflop Synchronizer 102
7.4.2 Pulse Synchronizers . 106
7.4.3 MUX Synchronizer . 106

7.5 Challenges in the Multiple Bit Data Transfer 106
7.6 Data Path Synchronizers . 108

7.6.1 Handshaking Mechanism . 108
7.6.2 FIFO Synchronizer . 110
7.6.3 Gray Encoding . 111

7.7 Summary and Future Discussions . 111

8 Low Power Design Considerations . 113
8.1 Introduction to Low Power Design . 113
8.2 Sources of Power . 114
8.3 Power Optimization During the RTL Design 116
8.4 Switching and Leakage Power Reduction Techniques 121

8.4.1 Clock Gating and Clock Tree Optimizations 122
8.4.2 Operand Isolations . 122
8.4.3 Multiple Vth . 123
8.4.4 Multiple Supply Voltages (MSV) 123
8.4.5 Dynamic Voltage and Frequency Scaling (DVSF) . . . 123
8.4.6 Power Gating (Power Shut Off) 123
8.4.7 Isolation Logic . 124
8.4.8 State Retention . 124

8.5 Low-Power Design Architecture and Use of UPF 124
8.6 Chapter Summary . 127

9 Architecture and Micro-architecture Design 129
9.1 Architecture Design . 129
9.2 Micro-architecture Design . 131

Contents xv

9.3 Use of Document During Various Design Phases 131
9.4 Design Partitioning . 132
9.5 Multiple Clock Domains and Clock Grouping 132
9.6 Architecture Tweaking and Performance Improvement 133
9.7 Strategies for the Micro-architecture Design of Processor 134
9.8 Chapter Summary . 138

10 Design Constraints and SDC Commands . 139
10.1 Important Design Concepts . 140

10.1.1 Clock Tree . 140
10.1.2 Reset Tree . 140
10.1.3 Clock and Reset Strategies . 141
10.1.4 What Impacts on Design Performance? 141

10.2 How to Interpret the Constraints . 142
10.2.1 Area Constraints . 142
10.2.2 Speed Constraints . 142
10.2.3 Power Constraints . 143

10.3 Issues in the Design . 143
10.4 Important SDC Commands Used During Synthesis 143

10.4.1 Synopsys DC Commands . 144
10.4.2 Checking of the Design . 145
10.4.3 Clock Definitions . 145
10.4.4 Skew Definition . 146
10.4.5 Defining Input and Output Delay 147
10.4.6 Specifying the Minimum (min) and Maximum (max)

Delay . 147
10.4.7 Design Synthesis . 149
10.4.8 Save the Design . 149

10.5 Constraint Validation . 149
10.6 Commands for the DRC, Power, and Optimization 150
10.7 Chapter Summary . 151

11 Design Synthesis and Optimization Using RTL Tweaks 153
11.1 ASIC Synthesis . 153
11.2 Synthesis Guidelines . 154
11.3 FSM Design and Synthesis . 155
11.4 Strategies for the Complex FSM Controllers 158
11.5 How RTL Tweaks Are Useful During Synthesis? 158
11.6 Synthesis Optimization Techniques Using RTL Tweaks 165

11.6.1 Resource Allocation . 165
11.6.2 Dead Zone Elimination . 167
11.6.3 Use of Parentheses . 171
11.6.4 Grouping the Terms . 173

xvi Contents

11.7 FPGA Synthesis . 175
11.8 Chapter Summary . 177

12 Synthesis and Optimization Techniques . 179
12.1 Introduction . 179
12.2 Synthesis Using Design Compiler . 180
12.3 Synthesis and Optimization Flow . 182
12.4 Area Optimization Techniques . 186

12.4.1 Avoid Use of Combinational Logic as Individual
Block . 187

12.4.2 Avoid Use of Glue Logic Between Two Modules . . . 187
12.4.3 Use of set_max_area Attribute 188
12.4.4 Area Report . 189

12.5 Design Partitioning and Structuring . 190
12.6 Compilation Strategy . 192

12.6.1 Top-Down Compilation . 192
12.6.2 Bottom-Up Compilation . 193

12.7 Chapter Summary . 193

13 Design Optimization and Scenarios . 195
13.1 Design Rule Constraints (DRC) . 195

13.1.1 max_fanout . 196
13.1.2 max_transition . 196
13.1.3 max_capacitance . 197

13.2 Clock Definitions and Latency . 198
13.2.1 Clock Network Latency . 198
13.2.2 Generated Clock . 198
13.2.3 Clock Muxing and False Paths 199
13.2.4 Clock Gating . 199

13.3 Commands Useful During Design Synthesis and
Optimization . 200
13.3.1 set_dont_use . 201
13.3.2 set_dont_touch . 201
13.3.3 set_prefer . 202
13.3.4 Command for the Design Flattening 202
13.3.5 Commands Used for Structuring 203
13.3.6 Group and Ungroup Commands 203

13.4 Timing Optimization and Performance Improvement 204
13.4.1 Design Compilation with ‘map_effort high’ 204
13.4.2 Logical Flattening . 205
13.4.3 Use of group_path Command 205
13.4.4 Submodule Characterizing . 208
13.4.5 Register Balancing . 209

13.5 FSM Optimization . 209

Contents xvii

13.6 Fixing Hold Violations . 210
13.7 Report Command . 211

13.7.1 report_qor . 211
13.7.2 report_constraints . 212
13.7.3 report_contraints_all . 212

13.8 Multicycle Paths . 214
13.9 Chapter Summary . 214

14 Design for Testability . 217
14.1 What Is Need of DFT? . 217
14.2 Testing for Faults in the Design . 218
14.3 Testing . 218
14.4 Strategies Used During the DFT . 219
14.5 Scan Methods . 220

14.5.1 Mux-Based Scan . 221
14.5.2 Boundary Scan . 221
14.5.3 Built-In Self-Test (BIST) . 221

14.6 Scan Insertion . 223
14.7 Challenges During the DFT . 223
14.8 DFT Flow and Test Compiler Commands 224
14.9 The Scan Design Rules to Avoid DRC Violations 224
14.10 Chapter Summary . 227

15 Timing Analysis . 229
15.1 Introduction . 229
15.2 What Are Timing Paths for Design . 230

15.2.1 Input to Reg Path . 231
15.2.2 Reg to Output Path . 231
15.2.3 Reg to Reg Path . 231
15.2.4 Input to Output Path . 232

15.3 Let Us Specify the Timing Goals . 232
15.4 Timing Reports . 235
15.5 Strategies to Fix Timing Violations . 236

15.5.1 Fixing Setup Violations in the Design 238
15.5.2 Hold Violation Fix . 242
15.5.3 Timing Exceptions . 242

15.6 Chapter Summary . 242

16 Physical Design . 245
16.1 Physical Design Flow . 245
16.2 Foundation and Important Terms . 246
16.3 Floor Planning and Power Planning . 248
16.4 Power Planning . 249
16.5 Clock Tree Synthesis . 251
16.6 Place and Route . 252

xviii Contents

16.7 Routing . 253
16.8 Back Annotation . 255
16.9 Signoff STA and Layout . 255
16.10 Chapter Summary . 257
Reference . 258

17 Case Study: Processor ASIC Implementation 259
17.1 Functional Understanding . 259
17.2 Strategies During Architecture Design 260
17.3 Micro-architecture Strategies . 263
17.4 Strategies During RTL Design and Verification 265
17.5 The Sample Script Used During Synthesis 267
17.6 Synthesis Issues and Fixes . 267
17.7 Pre-layout STA Issues . 268
17.8 Physical Design Issues . 269
17.9 Chapter Summary . 270

18 Programmable ASIC . 271
18.1 Programmable ASIC . 271
18.2 Design Flow . 273
18.3 Modern FPGA Fabric and Elements . 274
18.4 RTL Design and Verification . 279
18.5 FPGA Synthesis . 283

18.5.1 Arithmetic Operators and Synthesis 283
18.5.2 Relational Operator and Synthesis 284
18.5.3 Equality Operator Synthesis 287

18.6 Design at Fabric Level . 288
18.7 Chapter Summary . 290

19 Prototyping Design . 293
19.1 FPGAs for Prototyping . 293
19.2 Synthesis Strategies During Prototyping 295

19.2.1 Fast Synthesis for Initial Resource Estimation 295
19.2.2 Incremental Synthesis . 295

19.3 Constraints During FPGA Synthesis . 297
19.4 Important Considerations and Tweaks 299
19.5 IO Pad Synthesis for FPGA . 301
19.6 Prototyping Tools . 301
19.7 Chapter Summary . 301

20 Case Study: IP Design and Development . 303
20.1 IP Design and Development . 303
20.2 What We Consider During the IP Selection 304
20.3 Strategies Useful During the IP Design 304
20.4 Prototyping Using Multiple FPGA . 307

Contents xix

20.5 H.264. Encoder IP Design and Development 309
20.5.1 Features and Micro-architecture Design Strategies . . . 309
20.5.2 Strategies During RTL Design and Verification 310
20.5.3 Strategies During Synthesis and DFT 311
20.5.4 Strategies During Pre-layout STA 311
20.5.5 Strategies During Physical Design 312

20.6 ULSI and ASIC Design . 312
20.7 Chapter Summary . 313

Appendix A . 315

Appendix B . 321

Bibliography . 323

Index . 325

xx Contents

About the Author

Vaibbhav Taraate is an entrepreneur and mentor at “1 Rupee S T”. He holds B.E.
(Electronics) degree from Shivaji University, Kolhapur (1995) and received a Gold
Medal for standing first in all engineering branches. He completed his M.Tech.
(Aerospace Control and Guidance) at the Indian Institute of Technology
(IIT) Bombay, India, in 1999. He has over 18 years of experience in semi-custom
ASIC and FPGA design, primarily using HDL languages such as Verilog, VHDL
and SystemVerilog. He has worked with multinational corporations as a consultant,
senior design engineer, and technical manager. His areas of expertise include RTL
design using VHDL, RTL design using Verilog, complex FPGA-based design, low
power design, synthesis and optimization, static timing analysis, system design
using microprocessors, high-speed VLSI designs, and architecture design of
complex SOCs.

xxi

Chapter 1
Introduction

If we recall the beginning of the miniaturization era, then we can imagine the basic
bipolar junction transistor invention at Bell Labs (now AT&T) during year 1947.
The first bipolar junction transistor was invented by William Shockley, Bardeen,
and Brattain at Bell Labs and got the Nobel Prize in physics during the year 1956.
The first integrated circuit was introduced by the 26-year-old engineer Jack Kilby at
Texas Instruments (TI).

The popularity of CMOSdevices increased during the year 1963 due to lowpower,
high package density, and high-speed requirements.

During the year 1965-1975, Gordon Moore stated Moore’s law that is ‘Number
of transistors in dense integrated circuit doubles in approximate 18–24 months.’ The
observation ofGordonMoorewas valid till the year 2015. Itmay requiremodification
for the technology node below 10 nm. According to my observation to double the
transistors, it may require almost 36 months which may be true during next few
decades.

To have basic understanding of the ASIC design and flow, the objective of the
remaining sections is to get familiarity with the types of ASICs, different abstraction
levels, and few examples which can be useful to think about the ASIC design and
strategies.

ASIC is an application specific integrated circuit and designed for specific application.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_1

1

2 1 Introduction

1.1 ASIC Design

The era of miniaturization from the year 1960 to 2020 has witnessed lot of the
evolutions and design changes. What we need to understand is that, what is exactly
ASICdesign?Nowconsider the small square of fewmicrometers or nanometerwhich
is empty box. Now for the specific functionality, design team will fill this empty box
with functional blocks. The design team which performs this is front-end (logic)
design team.

The backendor physical design teamworks in the area of floor planning to physical
verification at the chip level for the specific technology node.

The manufacturing unit which is foundry performs the manufacturing and pack-
aging of the chip in mass, and initially few sample pieces will be tested by the design
houses to understand the intended design outcome.

Now how all above is achieved? All the design-related work is achieved by the
intelligent chip designers working in the various areas of the chip design using the
Electronic Design and Automation (EDA) tools. The various popular EDA tools
are from Synopsys and Cadence and extensively used in the design of chip and to
improve or to achieve the desired performance.

With the functionality of the chip, it requires to understand about the constraints
such as area, speed, and power and the main goal of the logic design and physical
design team is to understand the block-level and top-level constraints and to have the
better strategy to achieve the desired performance.

For the basic understanding, consider the pipelined processor which performs the
basic arithmetic and logic operations such as addition, subtraction, multiplication,
division, XOR, OR, AND, and NOT. What we need to imagine at the higher level
is the functional blocks, complexity of the design that is rough estimation of the
area, what constraints we should apply, and what exactly we will achieve. At the
beginning, we will have just the basic idea of the blocks and as the design evolves
we will land up into the phase of the chip architect.

For the idea of the architecture of the above chip, the basic layout is shown
in Fig. 1.1. The subsequent chapter discusses the design flow, chip architecture,
micro-architecture!

1.2 Types of ASIC

ASIC Design: ASIC stands for the application-specific integrated circuit and is
designed to perform the specific application. For example, the processor or controller
is used to process the specific information.

The following are different types of ASICs

1. Full-custom ASIC
2. Semi-custom ASIC
3. Gate array-based designs
4. Structured ASICs.

1.2 Types of ASIC 3

Fetch and Store
Logic

Pipelined
control logic

Computational
Logic (ALU) Output Buffers

Control and
timing Block

Internal
Memory

Fig. 1.1 Basic chip layout

Full-Custom ASIC: In this type of ASICs, the design starts from scratch for the
specific technology node. Each cell is designed depending on the technology node
requirements. This approach is useful for high volume production, and one can
imagine the microprocessors and floating-point processors, which are required in
the design and can be designed using the full-custom design flow.

The major advantage of the full-custom design is that for the high volume produc-
tion it gives the lower power, high speed, and the least gate count. Achieving the
constraints of the speed, area, and power is time consuming for this flow. But as
the cells are designed from the scratch for the desired technology nodes, the desired
constraints can be achieved.

The major disadvantage of this flow is the high non-recurring expenditure and the
long design cycle time.

Standard Cell-Based ASICs

4 1 Introduction

In this type of design flow, the standard library cells such as NAND, NOR, XOR,
and flip-flops are used during the design. The beauty of this flow is that it uses
the pre-defined and prefabricated cells, for example, RAM hard macro-cores, etc.
The transistors and interconnects are customized; that is, all the mask layers are
customized.

The advantage of this flow is that, as compared to full-custom ASIC the design
cycle time is shorter and for the specific technology node the pre-validated standard
cells like microprocessors and macros are available during the design.

The disadvantage is that as compare to the gate array based ASICs, the design
has the high NRE and it needs separate fabrication mask for each design.

Gate Array-Based ASIC

In this type of ASICs, the wafers are prefabricated with unconnected gate array. That
is, wafers are common for all the designs. The types of gate array-based ASICs are
mainly of following two types.

1. Channeled gate array
2. Channel-less gate array.

Channeled Gate Array: In this type of ASIC, the interconnects use the pre-defined
spaces between the rows of base cells.

1.2 Types of ASIC 5

Channel-Less Gate Array: In this type of ASICs, the few top mask layers are
customized.

The major advantage of the gate array-based ASIC is that, lower NRE cost as the
same wafer is fabricated for the multiple designs. Another main advantage is the low
turnaround time.

6 1 Introduction

The main disadvantages are the low density, lower volume, and the less optimized
design.

Structured ASICs

A structured ASIC falls between and gate array and a standard cell-based ASIC.
The main design task involves mapping the design into a library of building block

cells and interconnecting them as necessary. Themain important points regarding the
structured ASICs are components are ‘almost’ connected in a variety of pre-defined
configurations and only a few metal layers are needed for fabrication which in turn
drastically reduces turnaround time.

The advantages of the structured ASIC are low NRE cost, less complexity, low
power consumption, high performance, and the smaller marketing time.

The main disadvantage is that the team needs to have better understanding of the
design constraints due to the use of prefabricated design cells.

1.3 Abstraction Levels

The design can go through the different abstraction levels such as functional design,
logic design, gate-level design, and the switch-level design. This section discusses
these abstraction levels in more detail.

1. Functional Design: Now imagine a scenario to design a product or chip, so the
first thought is the product idea or/anddependingon the idea the chip functionality
can be extracted. The functional design is basically the outcome of the functional
specification, and the group of team members can create the high-level and low-
level design document and can code the functionality using the higher-level
language such as C or C++. For example, consider the H.264 encoder design,
and the functional design team can create the golden reference model using the
high-level language by using the following

(a) The types of frames which need to be processed
(b) The frame support
(c) The prediction blocks and functionality
(d) The quantization and transform algorithms required
(e) The entropy coding methods

If the desired functionality is validated, then the design can be considered as
golden reference model which can be used throughout the design.

2. Logic Design: The logic design team understands the architecture of the chip
and the partitioning mechanisms to complete the RTL design, where RTL stands
for the register transfer level. The team of professionals uses the HDL such as
VHDL, Verilog, and SystemVerilog to have the RTL design and verification at
the block and top level. The main advantages of the HDL used during the RTL
design are as follows:

1.3 Abstraction Levels 7

(a) The HDL supports the concurrent and sequential constructs.
(b) HDL supports the notion of time.
(c) HDL supports describing the interfaces and ports as input, output, bidirec-

tional.
(d) HDL supports the edge- and level-sensitive design constructs.

For more details about the RTL design and verification, refer Chaps. 3 and 4. The
logic design flow is discussed in Chap. 2.

The RTL design example using the Verilog to infer the 2-bit shift register using
the non-blocking assignment is described in Example 1.

Example 1 The RTL description using Verilog

///
module non_blocking_assignments
(input data_in, clk, reset_n,

output reg data_out);

reg tmp;

always @ (posedge clk or negedge reset_n)
begin

if (~ reset_n)
begin

{ data_out, tmp } <= 2'b00;

end

else
begin

 data_out <= tmp;

tmp <= data_in;
end

end
endmodule

///

3. Gate-Level Design: The RTL is given as one of the inputs to synthesis tool to
get the gate-level netlist. The synthesis is process of getting the lower level of
abstraction from the higher-level design (Fig. 1.2).

8 1 Introduction

Fig. 1.2 RTL schematic of Example 1

4. Switch-Level Design: The design using the CMOS standard cells and switches is
called as switch-level design. In the simple term, the physical design or backend
design is like playing with the switches and standard cells, macros for the specific
technology node. The backend/physical design flow is discussed in Chap. 2.

1.4 Design Examples 9

1.4 Design Examples

Now consider the ASIC design of H.264 encoder and decoder, and what we should
do?

1. Market survey to understand the availability of various products in the market
2. The functional specification of the H.264 encoder and decoder
3. The functional design documentation such as high-level design (HLD) and low-

level design (LLD) and design planning
4. Logic Design: Plan the design

(a) Specification understanding and the architecture design
(b) RTL design and verification
(c) Synthesis/DFT and timing verification

5. Physical Design: Design from floor planning to physical verification

(a) Planning of the design (floor planning and power planning)
(b) CTS
(c) Place and route
(d) Physical and timing verification
(e) GDSII

6. Manufacturing and Test: The design manufacturing and test phases

(a) Fabrication
(b) Packaging
(c) Test.

Consider the initial floor plan of the H.264 encoder (Fig. 1.3).

1.5 What We Should Know?

During the ASIC design cycle with functional design and validation, we should focus
on the area, speed, and power constraints.

1. Area: The chip area and the logic area which defines the overall density of the
design in the few micrometer square. Meeting the area constraints is one of the
important tasks during the logic and physical synthesis. The area optimization
can be achieved at various levels such as

(a) Architecture tweaks
(b) RTL tweaks
(c) Using synthesis commands
(d) At the physical design using dedicated cells

10 1 Introduction

Frame Buffer

Deblocking
Filter

Inter and Intra
Prediction Entropy Coding

Transform and
Quantization

Output Buffer

Fig. 1.3 Initial floor plan of H.264 encoder

2. Speed: The speed is another important constraint and can be achieved at the
block and top level using the

(a) Synopsys PT commands
(b) RTL tweaks
(c) Architecture tweaks
(d) During physical design
(e) Using the dedicated IPs

3. Power: The power, static and dynamic are another important constraints for
ASIC and can be achieved using the following

(a) Use of low-power architecture
(b) Low power cells
(c) RTL tweaks to reduce the dynamic power
(d) Low power format

4. Clock Skew: The skew is the difference between the clock arrivals at twodifferent
coordinates.

(a) Positive Clock Skew: The launch flip-flop is triggered first and then capture
flip-flop.

1.5 What We Should Know? 11

(b) Negative Clock Skew: The launch flip-flop is triggered last, and capture
flip-flop is triggered first.

5. Slack: The slack is the difference between the two different time instances.

(a) Setup Slack: The setup slack is the difference between the data required
time and data arrival time.

(b) Hold Slack: The hold slack is the difference between the data arrival time
and data required time.

6. Clock Gating: The use of the clock gating cells to minimize the dynamic power.
7. Synchronous Design: All the flip-flops in the design are triggered by using the

common clock source.
8. Asynchronous Design: The flip-flops in design are triggered by the different

clock sources.

1.6 Important Terms Used Throughout Design Cycle

The following are few important terms which we should know during the ASIC
design cycle.

1. Architecture: Block-level representation of design
2. Micro-architecture: Sub-block-level representation of design
3. RTL: Register transfer level
4. RTL design: Design using the HDL synthesizable constructs
5. RTL verification: The testbench and automation using the non-synthesizable

constructs
6. Synthesis: The process of getting the gate-level netlist from the RTL. Or it is

the process of getting the lower level of abstraction from the higher-level design
7. DFT: Design for test to find the manufacturing defects
8. STA: Static timing analysis at the pre-layout or post-layout
9. Floor planning: The chip floor plan
10. Power planning: The power mesh and ring planning for the chip
11. CTS: Clock tree synthesis, the clock trees for uniform distribution of skew, and

the strategy
12. P and R: Placement and routing that is the placement of standard cells and

macros, IPs, and to route them
13. Physical verification: The verification that is LVS and DRC
14. LVS: Layout versus schematic check
15. DRC: Design rule check
16. Back annotation: The RC extraction
17. GDSII: GDSII stream format, common acronym GDSII, is a database file

format which is the de facto industry standard for data exchange of integrated
circuit or IC layout artwork.

12 1 Introduction

1.7 Chapter Summary

The following are few important points to conclude the chapter.

1. ‘Number of transistors in dense integrated circuit doubles in approximate 18–
24 months’ is called as Moore’s law.

2. ASIC stands for the application-specific integrated circuit.
3. FPGA stands for the field programmable gate array.
4. The major advantage of the full-custom design is that for the high volume

production it gives the lower power, high speed, and the least gate count.
5. The main advantage of the semi-custom ASIC is, as compared to full-custom

ASIC the design cycle time is shorter and for the specific technology node the
pre-validated standard cells likemicroprocessors andmacros are available during
the design.

6. The major advantage of the gate array-based ASIC is that lower NRE cost as the
same wafer is fabricated for the multiple designs.

7. The main design constraints are area, speed, and power.

Chapter 2
ASIC Design Flow

As discussed in the previous chapter, the ASICs can be of type full-custom, semi-
custom, gate array-based ASICs. The major objective of the following few sections
is to have the detailed discussion about the semi-custom ASIC design flow and the
programmable ASIC design flow. The important design examples are also discussed
in the next few sections and useful during the ASIC and FPGA design.

2.1 ASIC Design Flow

The semi-customASIC design in which the standard cells and macros which are pre-
validated is used. As discussed in Chap. 1, we can have different types of ASICs such
as full-custom, semi-custom, gate array-based and depending on the design require-
ments we can choose one of the flows. Figure 2.1 describes few of the important
design phases during the ASIC design cycle.

1. Market Survey and Specification Extraction: It is one of the important phases
during the design cycle. Before the logic design, the team performs the market
survey to understand what are the different products of similar type available in
the market. Origin of any design idea or product can be realized in the quick time,
and product should be excellent in all the aspects that are the major objective of
any organization. The excellence in the design and product innovation is objective
of many research and development organizations. For example, consider Intel
as processor design organization, what they work on the processing capability,
low power architecture design, high-speed designs, signal integrity, and more
reliability to their chipsets.

Understanding of the ASIC design flow plays an important role during design cycle.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_2

13

14 2 ASIC Design Flow

Market Survey&
Specification

Extraction

Design Planning

Logic Design

Physical Design and
GDSII

Chip

Fig. 2.1 Semi-custom ASIC design flow

For new idea, finalization of the specification and the architecture of the chip is
the primary task and for that themarket survey plays an important role. Following
the team does during the market survey.

(a) The detailed understanding of the available products
(i) Understanding of functionality, speed, power, and area
(ii) Understanding about the electrical characteristics
(iii) Understanding about the mechanical assembly and packaging
(iv) Understanding about the user interfaces

(b) The volume and cost of product
(c) End customer base
(d) How the new idea can be better as compared to existing products?

The main outcome of all above is to extract the specifications of the product or
chip at various levels. Our goal is to work on the functional design of the chip so
we will consider the functional specifications.

2.1 ASIC Design Flow 15

Let us consider the 32-bit processor what we need is the following!

(a) The operations performed by the processor such as arithmetic, logical, data
transfer, branching, and floating point

(b) The complexity of bus interfaces such as address bus and data bus
(c) The performance improvement mechanism such as pipelining and the

configuration support
(d) The electrical characteristics of interfaces such as slew, voltage levels, and

power
(e) The external interface information and compatibility
(f) The internal storage information and the data computation schemes
(g) The IP availability and their specifications
(h) The technology node for ASIC and the performance
(i) What are the constraints achieved such as area, speed, and power?

By using all above, the specifications of the product can be documented and the
team understands the feasibility of the product using few risk and dependability
matrix parameters. Consider the parameter as a speed, existing chipset is working
on the operating frequency of 400MHzand technology node is 10 nm then can the
desired product can operate at 450 MHz or not?
If answer is no due to the technology library cell characteristics, then the choice
can be work on the 400 MHz but with more parallel computational elements
or can use the lower technology node such as 7 nm to achieve the 450 MHz
operating frequency.

2. Design Planning: The design planning in technical terminology is the architec-
ture and micro-architecture design, but practically with this we need to work on
the project planning and chip delivery plan to the market. So broadly concurrent
teams of technical, man management, and the delivery will work to accomplish
the design task. The project planning is ruled out as per as discussion in this book
is concerned. Our objective is to work on the understanding of the specification
to have the top-level architecture in place so that we can plan for the logical,
physical design and chip manufacturing and test phases.
The specification extraction document is used as input during this phase to get

(a) Architecture design and micro-architecture design
(b) Architecture tweaks to estimate the rough area and the possibility of

achieving constraints
(c) Having information about the top-level interfaces and the timing
(d) Can be used to understand about the storage and memory requirements
(e) Useful for the project planning and planning of milestone delivery

We will consider the outcome of the design planning stage as the architecture
and micro-architecture evolution to have the better architecture design.

3. LogicDesign: The logic design phase of theASIC is very important as the quality
of the RTL design and verification decides about the quality of chip. During the
logic design phase, broadly we need to perform the following and discussed in
Sect. 2.1.1.

16 2 ASIC Design Flow

(a) RTL design
(b) RTL verification
(c) Synthesis
(d) DFT and scan insertion
(e) Equivalence checking
(f) Pre-layout STA

4. Physical Design and GDSII: The physical design phase of the ASIC is also
called as backend design, and the physical design team uses the gate-level netlist
as one of the inputs with the technology libraries to get the GDSII. During the
physical design phase, broadly we need to perform the following and discussed
in Sect. 2.1.1.

(a) Floor planning
(b) Power planning
(c) CTS
(d) Place and route
(e) LVS
(f) DRC
(g) Signoff STA
(h) GDSII

5. Chip: To get the chip from foundry, there are several manufacturing and pack-
aging processes. The sample chips will be issued to test houses to perform the
testing.

2.1.1 Logic Design

The logic design flow uses the functional design specifications and the target tech-
nology library for the ASIC to get the gate-level netlist. The logic design flow is
shown in Fig. 2.2 and consists of the important steps as follows

1. Design partitioning at the architecture level
2. RTL design and verification
3. Synthesis and DFT
4. Equivalence checking
5. Pre-layout STA.

This section discusses these important milestones.

1. Design Partitioning: As the ASIC design architecture is complex in nature and
consists of million or billion gates, the better idea is to have the partitioning
of the design at the architecture level. The architecture and micro-architecture
document is evolved from the functional specifications and is used as reference
for the design.

2.1 ASIC Design Flow 17

Partitioning

RTL Design

RTL Verification

Logic Synthesis

Test and Scan
Insertion

Equivalence Checking

Pre Layout STA

Fig. 2.2 ASIC logic design flow

The design partitioning goal is to have the modular design approach to get the
better quality of the RTL. The design partitioning team considers the following
points while partitioning of the design.

18 2 ASIC Design Flow

(a) The complexity of the blocks
(b) IPs used
(c) Single clock verses multiple clock
(d) Low-power design strategies
(e) Software and hardware partitioning
(f) Constraints for the functional blocks

By considering all above, the design is partitioned into multiple blocks and used
as the basic foundation for the RTL design and verification. Better design parti-
tioning can yield into the efficient RTL design and in turn the chip develop-
ment. The design partitioning can be achieved at the different levels such as the
architecture, RTL, and netlist level.

2. RTL Design: As discussed in Chap. 1, the RTL is register transfer level and it
is the representation of the design functionality using the hardware description
language. Throughout this book, our focus is to have discussion on the ASIC
design using Verilog as hardware description language. During the RTL design
phase, the following is accomplished by the design team.

(a) Understanding of the functionality of the design and the design partitioning
(b) The block-level RTL design. If the block functionality is complex, then the

micro-architecture of the design is to implement the sub-block RTL
(c) Use of the registered inputs and outputs for the better and clean timing
(d) Use of the area and speed improvement features at the RTL level. The

features such as resource sharing and pipelining
(e) The RTL design using the modular design approach
(f) Use of the synchronizers for passing of the data between the different clock

domains
(g) Use of the required low power cells and the power formats during the RTL

design stage
(h) Understanding of the use of required IPs and the integration to get the desired

functional output
(i) Top-level integration of the functional block to yield into the desired

intended functionality and the clean timing
(j) Sanity-level verification to confirm the design functionality and functional

correctness of the design

3. RTL Verification: For any kind of chip, the functional correctness at the block,
top, and chip level should be achieved and that is the primary objective of the
verification team. The following are few of the important tasks which verification
team should complete during the verification cycle.

(a) Verification planning for the chip
(b) Verification architecture
(c) Creating the test cases and test vectors which can be used during the

verification of the block and top functionality
(d) Assertion-based verification mechanism and automation in the testbenches

to achieve the desired coverage goals

2.1 ASIC Design Flow 19

(e) Efficient reportingmechanism and better communication strategies with the
RTL design team
So in the simplewaywhat the verification teamdoes is that better verification
plans and strategy to check for the functional correctness of the block and
tip-level design using the robust and automated testbenches!

4. Logic Synthesis: The synthesis is the processes of getting the lower level of
abstraction from the higher level. During the logic design, the objective is to get
the gate-level netlist from the Verilog RTL. During this book, our goal was to
have the focus on the FPGA synthesis using the Xilinx EDA tool Vivado, and
ASIC synthesis using the Synopsys Design Compiler which is popular EDA tool
and mostly referred as Synopsys DC.
The ASIC synthesis tool uses the following inputs to get the gate-level netlist.

(a) RTL design (.v files)
(b) Optimization constraints such as area, speed, and power
(c) Technology library

The synthesis tool should be efficient enough to achieve the target constraints such
as area, speed, and power. If constraints are not achieved, then it is recommended
to have the architecture tweaks and RTL tweaks.
Few of the architecture tweaks can be

(a) Improve the partitioning strategies
(b) Use the pipelined design approach
(c) Partition design at the sequential boundaries
(d) Include the parallelism by replicating design into multiple blocks

Few of the RTL design tweaks can be

(a) Use resource sharing
(b) Use dead zone elimination and constant folding
(c) Use the pipelining for the clean timing
(d) Use the sequential boundaries and modular approach during the block-level

design

The netlist can be saved in the file format and can be .v file or the Synopsys
database.

5. Test and Scan Insertions: The design for testability is used to get the manufac-
turing defects from the design. The DFT is mainly to find the stuck at faults from
the design may be single, double, or triple stuck at faults. The DFT is mainly to
check for the controllability and observability of the different nodes in the design.
The DFT is an important milestone to get the information about the defects. The
DFT schemes can be of various types, and few of them are

(a) Ad hoc DFT
(b) Structured DFT

20 2 ASIC Design Flow

(i) Scan-based DFT
1. Partial scan
2. Full scan

(ii) Built in Self-test
1. LBIST
2. MBIST

(iii) JTAG

The DFT schemes and the case study are discussed in the subsequent chapters,
and the major goal is to understand about the DFT schemes with the objective
and the role of EDA tools.

6. Equivalence Checking: To preserve the design intent, the equivalence checking
needs to be performed to check the logic equivalence. The equivalence checking
uses the formal verification techniques.
The objective of the equivalence checking is to verify the RTL design function-
ality.

7. Pre-layout STA: The STA stands for the static timing analysis and is one of the
important milestones during the logic design. The major goal is to find out the
timing violations from the design, and these violations are mainly the setup and
hold time. During the pre-layout STA, the setup time violations are fixed as the
design doesn’t have the routing information. STA popular EDA tool is Synopsys
PT (PT shell) and used to report the timing information by analyzing all timing
paths from the design. The STA tool uses the input as the gate-level netlist, timing
library, and technology library with the timing constraints to analyze the timing
for the design.

More about the timing is discussed in the subsequent chapters.

2.1.2 Physical Design

The physical design flow with the Synopsys IC Compiler is discussed in Chap. 16.
This section discusses what exactly the design teamworks during the physical design
phase.

As the gate-level netlist is available from the logic design flow, the netlist with
chip constraints and required libraries is used as input during the physical design
flow.

The physical design starts with the floor planning that is planning of the design
mapping, and the goal is that there should not be congestion while routing of the
design and the logic blocks or functional blocks should meet the aspect ratio. The
better floor planning is required to have the better area, speed, and power and will be
useful to avoid the routing congestion. The power planning stage is used to plan for the
power rings (VDD and VSS) and power straps depending on the power requirements
(Fig. 2.3).

2.1 ASIC Design Flow 21

Floor Planning

Power Planning

CTS

Place and Route

LVS

DRC

Signoff STA

GDSII

CHIP

Fig. 2.3 ASIC physical design flow

22 2 ASIC Design Flow

After the power planning is done, the clock tree synthesis needs to be performed
to balance the clock skew and to distribute the clock to the various functional blocks
of the design. The clock tree can be H tree, X tree, balanced tree and discussed in
Chap. 16.

The placement and routing are done to have the layout of the chip. The layout
will have the routing delays, and many times the STA needs to be performed to find
and fix the timing violations.

The layout of chip needs to be checked to verify the

(a) Foundry rules, that is, DRC
(b) LVS that is checking of the layout versus the schematic and the intent is to verify

the layout with the gate level netlist.

If all the design rules are met and there are no any issues in the LVS, the team
needs to perform the signoff STA. The reason being after the layout, most of the
time the design will not meet the required timing and frequency and may requires
the modification or tweaking at the various stages. The flow is iterative, and objective
is to achieve the chip-level constraints.

After the signoff STA the GDSII is generated. The GDSII stands for the Generic
or Geometric Data Structure Information Interchange and describes the layout of the
design with the connectivity.

The foundry uses the GDSII to manufacture the chip. It is also treated as tapeout
delivered to foundry!

2.2 FPGA Design Flow

FPGA design flow can be also treated as programmable ASIC flow and described in
Fig. 2.4.

The important steps are

1. Design planning
2. RTL design and verification
3. Synthesis
4. Design implementation: It consists of the following steps

(a) Logic functionality mapping
(b) Place and route
(c) SDF-based verification
(d) Signoff STA

5. Device programming.

Few of the important FPGA blocks are shown in Fig. 2.5. The modern FPGA
architecture is complex and consists of few of the important blocks:

2.2 FPGA Design Flow 23

Market Survey

Specification
Extraction

Design Planning

RTL Design and
Verification

FPGA Synthesis

Design
Implementation

Device Programming

Fig. 2.4 FPGA design flow

1. Configurable logic block (CLB)
2. IO blocks
3. Switch boxes
4. DSP blocks
5. Multipliers
6. Processor block.

24 2 ASIC Design Flow

Fig. 2.5 FPGA architecture

Table 2.1 Comparison between ASIC and FPGA

Important parameters ASIC FPGA

Cost per piece Low High

Time to market Slow Fast

NRE cost High Low

Size Small Medium

Design complexity Very complex Moderately complex

Power consumption Low High

Performance High Moderate

The comparisonbetween theASICandFPGA is shown inTable 2.1 by considering
few important parameters.

2.3 Examples and Thought Process

Before the ASIC or FPGA design what we need to work on or what we need to
revise as foundation is discussed in this section. Consider the complex ASIC what
we should understand.

1. The role of ASIC and purpose of design
2. What is technology node
3. Functional and timing details

2.3 Examples and Thought Process 25

4. Important design elements such as standard cells, micros, IPs for the ASIC-
based designs. Functional blocks and architecture for FPGA-based designs

5. What are the constraints ?
6. For semi-custom ASIC, the reusable elements and components
7. We should think about the

(a) Area, speed, power requirements
(b) Data bandwidth
(c) Latency and clock requirements
(d) Multiple clocks in design and synchronizer requirements
(e) Low-power architecture and sequencing

8. Complexity of RTL design, verification, and available IPs
9. EDA tools and optimization efforts required
10. Testing requirements and test planning.

2.4 Design Challenges

If we consider the complex ASIC with million gate count, then important challenges
are

1. Design partitioning
2. Longer time to market
3. Complexity in the design and verification
4. Large number of resources
5. Availability of the functional and timing proven IPs
6. Meeting the optimization and design constraints
7. Interconnect delays and requirement of high-speed IOs
8. Testing time and the requirements
9. Effect of noise and the field testing
10. OCV analysis and chip tests.

The subsequent chapters discuss the practical issues in the ASIC design and how
to fix them at various stages of the ASIC design cycle.

2.5 Chapter Summary

The following are few of the important points to conclude the chapter.

1. Important logic design flow steps are: RTL design, RTL verification, synthesis,
DFT and scan insertion, equivalence checking, and pre-layout STA.

2. Important physical design flow steps are: floor planning, power planning, CTS,
place and route, DRC, LVS, signoff STA, GDSII.

26 2 ASIC Design Flow

3. During the logic design phase, the information about the clock network is not
available.

4. The layout of ASIC is floor plan, placement, and routing of the design.
5. During the pre-layout STA, the objective is to fix the setup violations.
6. After the P and R, the overall timing and frequency for the design will never

meet and hence post-layout STA is required.
7. Layout of the ASIC chip is the deliverable as the timing is clean and desired

constraints are met!.
8. The DRC is performed to confirm whether all foundry rules are met or not!
9. GDSII is Generic Data Structure Information Interchange and delivered to

foundry to manufacture ASIC.
10. The RTL to GDSII flow is basically ASIC design flow which consists of the

logic design and physical design.

Chapter 3
Let Us Build Design Foundation

During the RTL design phase, we always use the synthesizable constructs, and during
the synthesis phase, we will try with objective to achieve the required constraints.
Synthesis is a process to get the lower level of abstraction from the higher level of
design. During the ASIC design, we will get the various design abstraction levels
such as

1. Functional design
2. Architecture and logic design
3. Gate-level design
4. Switch-level design
5. Physical design.

To understand these various abstraction level, the chapter discusses about the
important design elements used frequently during the logic design.

3.1 Combinational Design Elements

In the combinational design, an output is function of the present input only. That is if
input changes, then an output will change. In the practical scenario, the output will
not change instant immediately, but it will change after some delay which we can
treat as the gate delay or the propagation delay.

Understanding of the basic design elements plays important role during the logic design and
synthesis.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_3

27

28 3 Let Us Build Design Foundation

Table 3.1 Combinational design elements

Combinational logic elements Description

Universal logic gates NAND, NOR universal logic gates to implement the
combinational design or Boolean function

XOR, XNOR Used to perform the complement of input and used in parity
detectors

Arithmetic resources The adders, subtractor, multipliers used as the arithmetic
resources

Multiplexers Multiplexers have many inputs and single output and used as
data selector or as universal logic to implement the Boolean
function. Useful during the pin multiplexing and clock
multiplexing

Demultiplexers Demultiplexers have single input and many outputs and used as
de-multiplexing logic. Useful during the pin de-multiplexing
and clock de-multiplexing

Decoders The decoders are extensively used to decode the data and to
enable one of the functional block at a time

Encoders Encoder is used to encode the binary data and performs the
reverse operation as compare to decoder

Priority detectors Priority detectors or priority encoders we can use to assign the
output depending on the priority of the level sensitive inputs

The propagation delay of the logic gate is the amount of time required for the
logic gate to generate the valid output when input changes either from 1 to 0 or
vice versa. The propagation delay is defined for the standard cell or logic gate in the
timing library.

The important elements are designed using the logic gates, andwemainly consider
the NAND and NOR logic gates as universal gates. The important combinational
elements are multiplexers, demultiplexers, decoders, encoders, code converters, and
the arithmetic logic elements adders, subtractors, and multipliers.

Table 3.1 discusses about the important combinational elements and their role
during the design phase and useful to design the glue logic, functionality for the
specific requirement. For few of these elements, the design strategy is explained in
this chapter and useful during the RTL design phase.

The following section discusses about these logic elements in the context of the
ASIC and FPGA design.

3.2 Logic Understanding and Use of Construct

Understanding the functionality for the individual functional block is especially
important during the ASIC design cycle. Whether it is moderate gate count design
or the complex design, the understanding will play important role to choose the

3.2 Logic Understanding and Use of Construct 29

suitable construct during the RTL design phase. For combinational modeling, we
will choose the ‘assign’ construct. The ‘assign’ is continuous assignment, and it
is neither blocking nor non-blocking. The multiple assign constructs will infer
the combinational logic, and the multiple continuous assignments will execute
concurrently.

The Syntax is

assign expression_1;
assign expression_2;

where assign is keyword. The keywords used in the Verilog (.v) file are marked using
bold characters.

For example, consider the following continuous assignments

assign sum = a_in ∧ b_in;
assign carry = a_in & b_in;

Both above continuous assignments will execute and update in the active event
queue, and they will execute concurrently to infer combinational logic as XOR and
AND gate.

3.3 Arithmetic Resources and Area

Let us try to discuss the arithmetic resource which is the adder and subtractor. To
optimize the area, the subtraction operation is implemented using the adders that is
by using the 2’s complement addition. For example, if we have 8-bit binary input A
then A − 1, we can consider as A + 11111110 + 1=A + 1111_1111.

Now, let us discuss the reason for performing the subtraction using the 2’s comple-
ment addition! Consider a practical scenario where we need to perform the 4-bit
addition and subtraction where A is 4-bit binary input, B is 4-bit binary input and
Control_Input controls the operation. Table 3.2 indicates these two operations.

Table 3.2 Description of the logic

Control_Input Operation Description

0 Addition (A, B) A + B

1 Subtraction (A, B) A − B

30 3 Let Us Build Design Foundation

Area Requirement: If we don’t use the 2’s complement for the subtraction, then
we need to use the resource as adder and subtractor and some data selection logic
to generate the output. So more the resources, you can imagine the logic inferred
as shown below. As shown, the design needs two 2:1 MUX, 4-bit adder and 4-bit
subtractor.

Issues in the Design: The main issue in the design strategy is poor data path
management and more resources in the data path. Both the adder and subtractor
are performing the operation at a time, and depending on the Control_Input the
output Result, carry/borrow is updated. So, the poor data path optimization due to
lack of sharing the common resources. Another issue is the use of multiplexing logic
at the outputs (Fig. 3.1).

Let us optimize the above logic using the concept of sharing of common resources.
Now, to eliminate the data selection logic that is 2:1, multiplexer and subtractor let
us use the full adder as arithmetic resource. The subtraction can be performed using
the 2’s complement method, and to perform A − B, use the A + (~B) + 1 that is
perform 1’s complement of B using the XOR logic. If one of the inputs of XOR gate
is logic ‘1’, then output of XOR is complement of the present input (Table 3.3).

Fig. 3.1 Logic without
resource sharing

Table 3.3 Description with goal of resource sharing

Control_Input Operation Description

0 Addition (A, B) A + B + Control_input = A + B + 0

1 Subtraction (A, B) A − B = A + B + Control_Input = A + B + 1

3.3 Arithmetic Resources and Area 31

Fig. 3.2 Logic with resource sharing

Logic with Optimized Area: As the full adder is used to perform the addition and
subtraction, it eliminates the need of multiplexers and subtractor. The Figure shown
is the optimized logic for the 4-bit addition and subtraction. The main advantage
of the logic is better data path optimization, and it performs the desired operation
depending on the status of the Control_Input (Fig. 3.2).

3.4 Code Converter

Most of the time during the design we may need to use the code converters to convert
the data in the suitable format. If we consider the data transfer or control signal
transfer in the multiple clock domain designs, then we need to have the gray codes.
The section discusses about the binary to gray code converter and gray to binary
code converters.

In the two successive binary numbers, one or more than one bit changes, but in the
two successive gray codes, only one bit changes. Gray codes are popular and used
as pointers in the FIFO design or to pass the control signals in the multiple clock
domain designs.

3.4.1 Binary to Gray Code Converter

The 4-bit binary to gray code converter inputs and outputs are listed in Table 3.4.
If we use the input as binary code, then to get the gray code, we need to have the

logic as

G3 = B3
G2 = B3 ∧ B2
G1 = B2 ∧ B1

32 3 Let Us Build Design Foundation

Table 3.4 Binary to gray code

Binary code
(B3 B2 B1 B0)

Gray code
(G3 G2 G1 G0)

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

G0 = B1 ∧ B0

where the character ∧ indicates the XOR operator in the Verilog. The logic diagram
is shown below, and the RTL design using Verilog code is described in the example.

Example 1 RTL description of Binary to Gray code converter

3.4 Code Converter 33

//
module code_converter

(input B3, B2, B1, B0,

output G3, G2, G1,G0

);

assign G3=B3;
assign G2 = B3 ^ B2;
assign G1 = B2 ^ B1;
assign G0 = B1 ^ B0;

endmodule
//

3.4.2 Gray to Binary Code Converter

The 4-bit gray to binary code converter inputs and outputs are listed in Table 3.5.
If we use the input as gray code, then to get the binary code, we need to have the

logic as

B3 = G3
B2 = G3 ∧ G2

34 3 Let Us Build Design Foundation

Table 3.5 Gray to binary code

Gray code
(G3 G2 G1 G0)

Binary code
(B3 B2 B1 B0)

0000 0000

0001 0001

0011 0010

0010 0011

0110 0100

0111 0101

0101 0110

0100 0111

1100 1000

1101 1001

1111 1010

1110 1011

1010 1100

1011 1101

1001 1110

1000 1111

B1 = (G3 ∧ G2 ∧ G1) = B2 ∧ G1
B0 = (G3 ∧ G2 ∧ G1 ∧ G0) = B1 ∧ G0

where the character ∧ indicates the XOR operator in the Verilog. The logic diagram
is shown below, and the Verilog RTL is described in the Example.

Example 2 RTL description of Gray to Binary code converter

3.4 Code Converter 35

///
module code_converter

(output B3, B2, B1, B0,

input G3, G2, G1,G0

);

assign B3=G3;
assign B2 = G3 ^ G2;
assign B1 = G3 ^ G2 ^ G1;
assign B0 = G3 ^ G2 ^ G1 ^ G0;

endmodule

///

For the FPGA based designs the technology schematic uses the LUTs and shown
in Figure (Figs. 3.3 and 3.4).

3.5 Multiplexers

The multiplexers are popular in the ASIC and FPGA design as data selectors, and
the multiplexers are treated as universal logic. Using the multiplexers, the desired
combinational function of\r logic is implemented. The effective way to infer the
multiplexer is using the continuous assign construct with the use of the conditional
operator. Consider 2:1 multiplexer (Table 3.6).

Fig. 3.3 4-bit gray to binary
code converter

36 3 Let Us Build Design Foundation

Fig. 3.4 Technology schematic for 4-bit gray to binary code converter

Table 3.6 The 2:1 multiplexer

Control_Input (Sel) Output (Y) Description

0 I0 For Sel = 0 an output Y = I0

1 I1 For Sel = 1 an output Y = I1

///
module mux_2to1(input I1, I0, Sel, output Y);

assign Y = (Sel) ? I1 : I0; // condi onal operator is used to infer 2:1 MUX

endmodule

///

3.5 Multiplexers 37

As shown for Sel = 1 Y = I1 and for Sel = 0 Y = I0.
Using the multiple assign constructs and by using the conditional operator, the

4:1 multiplexer is implemented.

module mux_4to1(input I3, I2, I1, I0, S1, S0, output Y);

wire Y1, Y0;

assign Y0 = (S0) ? I1 : I0;
assign Y1 = (S0) ? I3 : I2;
assign Y = (S1) ? Y1 : Y0;

endmodule
///

///

The logic inferred is shown in the Figure, and it consists of the three 2:1 multi-
plexer. The issue with the design is the cascaded stages that is if each multiplexer
has 1 ns propagation delay, the logic inferred will have the 2 ns propagation delay.

38 3 Let Us Build Design Foundation

3.6 Cascading Stages of MUX Using Instantiation

.I2(I[2]),
.I1(I[1]),
.I0(I[0]),
.S1(S[1]),
.S0(S[0]),
.Y(Y0)
);

mux_4to1 U1 (.I3(I[7]),
.I2(I[6]),
.I1(I[5]),

.I0(I[4]),

.S1(S[1]),

.S0(S[0]),
.Y(Y1)

);
mux_4to1 U2 (.I3(I[11]),

.I2(I[10]),
.I1(I[9]),
.I0(I[8]),

.S1(S[1]),
.S0(S[0]),
.Y(Y2)
);

///
module Mux_16to1(input[15:0] I , input [3:0] S, output Y);

wire Y3, Y2, Y1, Y0;

mux_4to1 U0 (.I3(I[3]),

3.6 Cascading Stages of MUX Using Instantiation 39

.S1(S[3]),

.S0(S[2]),

.Y(Y)
);

endmodule
///

mux_4to1 U3 (.I3(I[15]),
.I2(I[14]),
.I1(I[13]),
.I0(I[12]),
.S1(S[1]),
.S0(S[0]),
.Y(Y3)
);

mux_4to1 U4 (.I3(Y3),
.I2(Y2),
.I1(Y1),
.I0(Y0),

The logic inferred consists of five four to one multiplexers and is inferred due to
the component instantiation.

40 3 Let Us Build Design Foundation

If we consider the ASIC-based designs, then the multiplexers are useful in
following tasks.

1. The multiplexers are used to select from many clock frequencies and used as
clock selector.

2. Used for the pin multiplexing to minimize the pin count of the design
3. Used as combinational logic to select from one of the data inputs.

3.7 Decoders

The decoders are extensively used in the ASIC- and FPGA-based designs to select
one of the devices to establish communication. In the decoders, one of the outputs
is active at a time depending on the status of the select inputs.

3.7 Decoders 41

Consider the 2:4 decoder which has two select inputs and four outputs. The
decoder is enabled when Enable = 1. Table 3.7 describes the relationship between
the select lines and output lines.

Strategy During RTL Design: To infer the decoders which has 16 or 32 inputs, we
can use the logic duplication concept where the ‘Enable’ input of the decoder can be
controlled by the input side decoder. The designer can use the module instantiation
or the RTL design using the case construct to infer the required logic (Table 3.8).

Table 3.7 Truth table 2:4 decoder

Enable Select inputs
(I1 I0)

Outputs
(Y3 Y2 Y1 Y0)

1 00 0001

1 01 0010

1 10 0100

1 11 1000

0 xx 0000

Table 3.8 Truth table 4:16 decoder

Enable Select inputs
(I3 I2 I1 I0)

Output in binary

1 0000 0000_0000_0000_0001

1 0001 0000_0000_0000_0010

1 0010 0000_0000_0000_0100

1 0011 0000_0000_0000_1000

1 0100 0000_0000_0001_0000

1 0101 0000_0000_0010_0000

1 0110 0000_0000_0100_0000

1 0111 0000_0000_1000_0000

1 1000 0000_0001_0000_0000

1 1001 0000_0010_0000_0000

1 1010 0000_0100_0000_0000

1 1011 0000_1000_0000_0000

1 1100 0001_0000_0000_0000

1 1101 0010_0000_0000_0000

1 1110 0100_0000_0000_0000

1 1111 1000_0000_0000_0000

0 xxxx 0000_0000_0000_0000

42 3 Let Us Build Design Foundation

Table 3.9 The 2:4 decoder as selector

Enable Select inputs
(I3 I2)

Outputs
(Y3 Y2 Y1 Y0)

1 00 Enable Decoder 1

1 01 Enable Decoder 2

1 10 Enable Decoder 3

1 11 Enable Decoder 4

0 xx Disable all output decoders

If we observe the I3, I2 inputs, then the binary value remains same for the group of
consecutive four entries starting from 0 and can be used to design the inputs decoder.
The input decoder is used to select one of the output decoders at a time (Table 3.9).

From the figure, it is clear that the input-side decoder is used to enable one of the
output decoders at a time. The logic duplication is popular technique and useful in
the ASIC and FPGA designs to replicate the same logic. This technique is especially
useful in the FPGA-based designs to reduce the number of LUTs. For example, if
we need to infer the 8:256 decoder, then using the case, construct the logic inferred
in having a greater number of LUTs. So, larger case constructs can be splitted into
multiple using the logic duplication techniques. For ASIC, we can think of using
the logic duplication depending on the specific scenarios as it impacts on the area of
functional block.

3.8 Encoders 43

Table 3.10 The 4:2 encoder truth table

Select inputs
(I3 I2 I1 I0)

Outputs
(Y1 Y0)

Status

1000 11 0

0100 10 0

0010 01 0

0001 00 0

0000 00 1

3.8 Encoders

The encoder performs the reverse operation as compared to decoder. Consider the
four level-sensitive inputs and the design need to generate an output depending on
the logic high value at one of the inputs.

If I3 = 1 and I2, I1 and I0 are logic 0, then the encoder generates valid output as
Y1 = 1 and Y0 = 1. As outputs are valid, the status output is 0.

If all inputs are logic zero, then Status = 1 and indicates the invalid output and
should be ignored by other design which uses encoder outputs as inputs.

As shown in Table 3.10, it is assumed that one of the inputs is logic ‘1’ at a time,
but in practical systems, the assumption does not hold good as many inputs can be
active high at a time. So, to cater the need of the priority scheduling, it is essential
to design the priority encoders.

3.9 Priority Encoders

The priority encoders are used in the design to sample the high priority input and to
generate an valid output.

Consider the design having four inputs I3, I2, I1, I0, and I3 has highest priority as
compared to other inputs. Table 3.11 describes the functionality where I3 has highest
priority and I0 has lowest priority.

Table 3.11 The 4:2 priority encoder truth table

Select inputs
(I3 I2 I1 I0)

Outputs
(Y1 Y0)

Status

1xxx 11 0

01xx 10 0

001x 01 0

0001 00 0

0000 00 1

44 3 Let Us Build Design Foundation

The RTL should be coded using the nested if-else construct and should infer the
priority logic.

//

module priority_encoder (
input I3, I2, I1, I0,

output reg Y1, Y0, flag
);

always @ *
begin

if (I3)
begin
Y1 = 1;
Y0=1;
flag = 0;
end
else if (I2)

begin
Y1 = 1;
Y0=0;
flag=0;
end
else if (I1)

begin
Y1 = 0;

3.9 Priority Encoders 45

Y0=1;
flag=0;
end
else if (I0)

begin
Y1 = 0;
Y0=0;
flag=0;

end

else
begin
Y1 = 0;
Y0=0;
flag=1;

end

end

endmodule

//

The FPGA synthesis is shown in the figure, and the technology schematic consists
of three lookup tables. FPGA important resource is CLB, and it consists of the LUTs
and slice registers.

46 3 Let Us Build Design Foundation

3.10 Strategies During ASIC Design

During the ASIC design flow at the RTL design phase, try to use the following
strategies.

1. Use the synthesizable constructs and do not use the #delays in the RTL design.
2. Try to avoid the use of multiple assign constructs as due to parallel execution

the area may be higher.

3.10 Strategies During ASIC Design 47

3. Try to use always@* to model the combinational logic. It includes the required
inputs in the sensitivity list.

4. Use the blocking assignments to code the RTL using the always procedural
block.

5. Try to use the naming conventions such as net_name_in, net_name_out for
better readability.

6. Try to avoid the combinational looping as they have oscillatory behavior.
7. Try to use the parameter to have parameterized design.
8. Use the case construct to infer the parallel logic and nested if-else to infer the

priority logic.
9. While using casez and casex take care of the dangling inputs and synthesis and

simulation mismatches.
10. Try to divide the large number of assignments using multiple case constructs.

3.11 Exercises

1. Implement the digital logic to detect the even parity from the string of 8-bit binary
data? What should be the RTL design strategy for ASIC design?

2. Work on the logic development of 4-bit multiplier. Find out the resource
requirement for the 4-bit multiplier for the shift and add method.

3. If propagation delay of the full adder is 1 ns to generate the sum and 2 ns to
generate the carry output, and if the 16-bit ripple carry adder is to be designed,
then find the overall propagation delay to get the add (A, B)

4. Can you think of the high-level design strategy to pass data between the pipelined
processor and the memory and IOs. If the four memory blocks of 16 Kbyte each
and 128 IO devices need to establish communication with the processor, then
what should be the decoding logic?

5. Sketch the logic and optimize the area required for following

(a) A OR B
(b) A AND B
(c) A XOR B
(d) NOT A

Consider A, B are 8-bit binary inputs, and to perform only one operation at a time,
the design has 2-bit control inputs (control_operation).

3.12 Chapter Summary

Following are important points to conclude the chapter.

1. Use the resource sharing techniques to optimize the logic for the better data path
optimization.

48 3 Let Us Build Design Foundation

2. The multiplexer is universal logic, and the chain of multiplexers can be used to
select from one of the inputs.

3. Multiplexers are used to have pin multiplexing.
4. Decoders are used as selection logic in the system design.
5. Priority encoders are used to generate the output by analysing the priority of

inputs.

Chapter 4
Sequential Design Concepts

If we consider the ASIC design cycle then at various stages, we need to play around
with the sequential circuits may be using the counters, shift registers, memories and
other clock-based circuits and clock dividers. In such scenario, wemay encounter few
issues where we need to tweak the RTL or architecture to improve the performance
of ASIC. By considering all the above points, the chapter discusses about important
sequential elements with their use and the design of synchronous and asynchronous
sequential circuits.

4.1 Sequential Design Elements

In the sequential circuits, an output is function of the present input and past output.
Table 4.1 discuss about the important sequential elements and their use during the
design phase. For the synchronous or asynchronous designs, we will try to use
the edge-sensitive elements that are D flip-flops and our objective is to design the
sequential circuit with speed as the timing goal.

Understanding of the synchronous and asynchronous design techniques plays important role during
the design cycle.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_4

49

50 4 Sequential Design Concepts

Table 4.1 Important sequential elements

Sequential elements Description

Latch Level sensitive and used in the latch-based designs.
Latch-based clock gating and few scenarios in DFT for
time borrowing

Flip-flop Edge sensitive and mainly used in the design of
asynchronous and synchronous sequential circuits.
Application can be counters, shifters, design with the
registered inputs and registered outputs

Counters The synchronous or asynchronous counters where
counting happens on the active edge of the clock. Used
to count the predefined sequence and also used as clock
dividers

Shift-registers Sensitive on the active edge of clocks and designed
using D flip-flops and used to perform the right, left
shift and rotate operations

Asynchronous circuits Can be used to generate clocks but incurs more delay so
avoid the use of the asynchronous circuits

Clock dividers The PLL clock can be divided to get the internally
generated clock using the D flip-flops (Toggle flip-flop
designed using D flip-flop)

Finite state machine (FSM) controller For the larger ASIC designs different FSM controllers
can be used to detect the sequence with the glitch free
and clean output

Random number generators Used to generate the random numbers for specific
requirements using edge-sensitive elements and suitable
combinational elements

4.2 Let Us Understand Blocking Versus Non-blocking
Assignments

ImportantVerilog assignments usedwithin the procedural block ‘always’ and ‘initial’
are

• Blocking Assignments (BA)
• Non_Blocking Assignments (NBA).

The BA assignments are evaluated and updated in the active event queue, and the
right-hand side of the NBA is evaluated in the active event queue and updated in the
NBA queue.

The name blocking indicates that it blocks all the future assignments unless and
until present assignment is evaluated and updated, and hence, BA are not recom-
mended to use in the sequential design. It is recommended to use the BA for the
combinational design.

4.2 Let Us Understand Blocking Versus Non-blocking Assignments 51

4.2.1 Blocking Assignments

The RTL description using the blocking assignments is shown in Example 1 and the
intent is to infer the 3-bit shift register. But it infers the single flip-flop as the future
assignment evaluation is blocked during the current assignment execution.

Example 1 RTL description using the blocking assignments

//

module blocking_assignments(input data_in, clk, reset_n, output reg
data_out);

reg [1:0] tmp;

always @ (posedge clk or negedge reset_n)
begin

if (~ reset_n)
begin

{ data_out, tmp } = 3'b000;

end

else
begin

tmp[0] = data_in;
tmp[1] = tmp[0];
data_out = tmp[1];

end
end
endmodule

//

The RTL schematic is shown in Fig. 4.1 and the inferred logic has single flip-flop
with asynchronous reset.

4.2.2 Reordering of the Blocking Assignments

If we reorder the blocking assignments as shown in Example 2, the RTL infers the
3-bit shift register, and it indicates that the order of the blocking assignments will
play important role during the RTL description.

52 4 Sequential Design Concepts

Fig. 4.1 RTL schematic for Example 1

Example 2 RTL description using the blocking assignments reorders

///

module blocking_assignments(input data_in, clk, reset_n, output reg
data_out);

reg [1:0] tmp;

always @ (posedge clk or negedge reset_n)
begin

if (~ reset_n)
begin

{ data_out, tmp } = 3'b000;

end

else
begin

data_out = tmp[1];
tmp[1] = tmp[0];
tmp[0] = data_in;

end
end
endmodule

///

TheRTLschematic is shown inFig. 4.2, and theRTLdesigndescription (Example)
infers the 3-bit shift register using the asynchronous active low reset.

4.2 Let Us Understand Blocking Versus Non-blocking Assignments 53

Fig. 4.2 RTL schematic for Example 2

4.2.3 Non-blocking Assignments

The RTL description using the non-blocking assignments is shown in Example 3
and the intent is to infer the 2-bit shift register, and it infers the 2-bit shifter using D
flip-flops as the assignments executes concurrently within the begin-end.

Example 3 RTL description using the non-blocking assignments

///
module non_blocking_assignments(input data_in, clk, reset_n, output
reg data_out);

reg tmp;

always @ (posedge clk or negedge reset_n)
begin

if (~ reset_n)
begin

{ data_out, tmp } <= 2'b00;

end

else
begin

data_out <= tmp;

tmp <= data_in;
end

end
endmodule

///

54 4 Sequential Design Concepts

Fig. 4.3 RTL schematic for Example 3

TheRTL schematic is shown in Fig. 4.3, and theRTL design description (Example
3) infers the 2-bit shift register using the asynchronous active low reset.

4.2.4 Reordering of the Non-blocking Assignments

Reordering of the non-blocking assignments as shown in Example 4, the RTL
synthesis infers the 2-bit shift register, and it indicates that the order of the non-
blocking assignments will not effect on the synthesis result of the design. The RTL
schematic is shown in Fig. 4.3.

Example 4 RTL description using the non-blocking assignments reorders

4.2 Let Us Understand Blocking Versus Non-blocking Assignments 55

///
module non_blocking_assignments(input data_in, clk, reset_n, output
reg data_out);

reg tmp;

always @ (posedge clk or negedge reset_n)
begin

if (~ reset_n)
begin

{ data_out, tmp } <= 2'b00;

end

else
begin

data_out <= tmp;

tmp <= data_in;
end

end
endmodule
///

Use the following recommendations during the ASIC RTL designs
1. Use the non-blocking assignments to model the sequential logic
2. Use the blocking assignments to model the combinational logic
3. Don’t mix blocking and non-blocking assignments.

4.3 Latch-Based Designs

Latches are level sensitive and used in few applications such as latch-based clock
gating in low-power ASIC designs and few other applications such as DFT scan
chains with the latch borrowing.

Consider the functionality of the positive-level sensitive latchwhere the clk acts as
latch enable input. When the latch enable is active high, the latch acts as transparent
andQ=DwhereQ is an output of latch andD is data input.When latch is not enabled

56 4 Sequential Design Concepts

that is clk = 0, the latch holds previous value as previous output Q is circulated
through the even number of NOT gates.

Consider the CMOS implementation of positive-level sensitive latch where the
CMOS switch-1 passes data for CLK = 1 to generate valid output Q = D. Latch is
transparent during the positive level of the CLK. The even number of NOT gates is
used in the forward path and during the negative level of CLK that is CLK = 0 the
CMOS switch-2 is ON which holds the previous output Q.

So for the better understanding, the functionality is described in Table 4.2
(Fig. 4.4).

The timing sequence for the positive-level sensitive latch is shown in Fig. 4.5 and
the latch output Q = D during the positive level of the CLK. During negative level
of clk, it holds the previous output value.

RTL Design Strategy

The Intentional latches can be inferred if during the RTL design else clause is
eliminated. Consider the 4-bit latch coded using the Verilog using the if-else
construct within the always @ * procedural block. As discussed in Chap. 3
‘if-else’ generates the 2:1 multiplexer. Now to infer the intentional latches
eliminate the ‘else’ condition.

Table 4.2 The D latch truth table

CLK = Enable D Q CMOS switch status

1 0 0 CMOS Switch-1 is ON and CMOS Switch-2 is OFF. Q
= D

1 1 1 CMOS Switch-1 is ON and CMOS Switch-2 is OFF. Q
= D

0 X Hold past output CMOS Switch-1 is OFF and CMOS Switch-2 is ON. Q
= Previous Output

Fig. 4.4 D latch

4.3 Latch-Based Designs 57

Fig. 4.5 Timing diagram of the D latch

During the ASIC or FPGA synthesis you will get the warning that: Latches
may be generated from incomplete case or if statements.We do not recommend
the use of latches in designs, as they may lead to timing problems.

Example 5 is RTLdescription of 4-bit latch and coded using theVerilog synthesizable
constructs.

Example 5 RTL description of 4-bit latch

///
module latch_4bit (

input [3:0] d_in,
input clk,

output reg [3:0] q_out
);

always @ *

begin

if (clk)

q_out <= d_in;

end

endmodule

///

The four-bit latch schematic is shown in Fig. 4.6, and latch is level sensitive as D
is sampled during the active high level of CLK.

58 4 Sequential Design Concepts

Fig. 4.6 RTL schematic for
Example 5

4.4 Flip-Flop-Based Designs

The flip-flops are edge sensitive; that is, they either operate on the rising edge (low to
high transition) or falling edge (high to low transition) and used as sequential design
element in the synchronous or asynchronous designs.

The falling edge D flip-flop is shown in Fig. 4.7, and on the high to low transition
of the clk, the flip-flop samples the data input D to generate valid output.

The functional Table 4.3 describes the relationship between input and output on
the rising edge of clk.

The latch based implementation of the negative edge-sensitive flip-flop is shown
in Fig. 4.7. As shown, the flip-flop has two latches connected in cascade. The master
latch is positive-level sensitive, and the slave latch is negative-level sensitive.

The timing sequence for the negative edge-sensitive flip-flop is shown in the
Fig. 4.8. As shown, the master latch output Q1 changes on the positive level of clk
and slave latch output Q changes on the negative level of clock. The output from
flip-flop Q is sensitive to the falling edge of clk.

Fig. 4.7 D flip-flop

Table 4.3 Truth-table of negative edge-triggered flip-flop

CLK D Q

Falling edge 0 0

Falling edge 1 1

Rising edge or level X Hold past output

4.4 Flip-Flop-Based Designs 59

Fig. 4.8 Timing diagram of D flip-flop

The flip-flop or parallel-in-parallel-out registers are used in the ASIC design
to hold the data or to change the data on the active edge of the clock.

The edge sensitive elements are inferred if we use the procedural block always
with event control as posedge or negedge.

To infer the edge sensitive element use either one from following
always @ (posedge clk),
always @ (negedge clk)

Example 6 is the RTL description of the 4-bit parallel-in-parallel-out register. The
schematic is the representation of the 4-bit register which is rising edge-triggered
and uses four flip-flops (Fig. 4.9).

Fig. 4.9 RTL schematic for Example 6

60 4 Sequential Design Concepts

Example 6 RTL description of 4-bit parallel-input-parallel-output register

input [3:0] d_in,
input clk,

output reg [3:0] q_out
);

always @ (posedge clk)

begin

q_out <= d_in;

end

endmodule

///

///
module flip_flop (

4.5 Reset Strategies

For the FPGA and ASIC designs, the role of reset to initialize the design plays
an important rule. During the ASIC implementation to synchronize the internal
resets with the master reset input at various stages, we need to deploy the reset
synchronizers.

The dedicated reset tree and reset network can be used to generate the reset signal
required for the different functional blocks.

For the reset, we need to consider the

• Reset Recovery Time
• Reset Removal Time.

The resets are of two types.

1. Asynchronous Reset
2. Synchronous Reset.

4.5 Reset Strategies 61

4.5.1 Asynchronous Reset

If the reset need to be used to initialize the design irrespective of the active edge
of the clock, then the reset is treated as asynchronous reset. The ASIC RTL design
which uses the D flip-flop is shown in Example 7.

Example 7 RTL description of the asynchronous-reset D flip-flop

//
module flip_flop(

input d_in,
input clk, reset_n,
output reg q_out

);

always @ (posedge clk or negedge reset_n)

begin

if (~ reset_n)
q_out <= 1'b0;

else

q_out <= d_in;

end
endmodule

//

The reset is asynchronous input (reset_n) and the RTL schematic is shown in
Fig. 4.10.

The testbench for Example 8 is described using the non-synthesizable constructs
and is shown in example, and the sanity check result is shown in the waveform
(Fig. 4.11).

62 4 Sequential Design Concepts

Fig. 4.10 Asynchronous-reset logic

Fig. 4.11 Asynchronous-reset sampling

Example 8 Testbench for the D flip-flop

4.5 Reset Strategies 63

// Outputs
wire q_out;

// Instan ate the Unit Under Test (UUT)
flip_flop uut (
.d_in(d_in),
.clk(clk),
.reset_n(reset_n),
.q_out(q_out)

);

always #10 clk=~clk;

// Add s mulus here

always # 25 d_in = ~d_in;

ini al begin
// Ini alize Inputs
d_in = 0;
clk = 0;
reset_n = 0;

// Wait 100 ns for global reset to finish
#100;

reset_n =1'b1;

#500 reset_n = 1'b0;

#400 $finish;

 end
endmodule

///

///

module test_flip_flop;

// Inputs
reg d_in;
reg clk;
reg reset_n;

As shown in the simulation waveform the reset is sampled irrespective of the
active edge of clock and used to initialize the state of flip-flop to ‘0’.

64 4 Sequential Design Concepts

4.5.2 Synchronous Reset

If the reset need to be used to initialize the design on, the active edge of the clock
then the reset is treated as synchronous reset. The ASIC RTL design which uses the
D flip-flop is shown in Example 9.

Example 9 RTL description of the synchronous-reset D flip-flop

///
module flip_flop (

input d_in,
input clk, reset_n,
output reg q_out

);

always @ (posedge clk)

begin

if (~ reset_n)

q_out <= 1'b0;

else

q_out <= d_in;

end

endmodule
///

As the always procedural block is sensitive to positive edge of the clock, the reset
is checked within the always procedural block and it reset_n = 0; the output of the
flip-flop is initialized to logic ‘0’.

The testbench for Example 9 is described using the non-synthesizable constructs
and is shown in Example 8, and the sanity check result is shown in Fig. 4.12.

As shown in the simulation waveform, the reset is sampled on the active edge of
clock and used to initialize the state of flip-flop to ‘0’.

4.6 Frequency Divider 65

Fig. 4.12 Synchronous-reset sampling

4.6 Frequency Divider

Let us consider the use of the flip-flop in the ASIC or FPGA designs. We can use
the D flip-flops with additional combinational logic if required to design the clock
divider.

Consider that the PLL generates the 550 MHz square wave and used as a clock.
For internal logic, we need to use the 225 MHz clock; then in such scenario, we can
design the divide-by-two circuits. The circuit can be designed using the D flip-flop
where the output complement of Q is feedback to the input D (Fig. 4.13).

Example 10 RTL description of the clock divider logic

Fig. 4.13 Clock divider logic

66 4 Sequential Design Concepts

);

wire data_in;
flip_flop inst_0 (

.d_in(data_in),
.clk(clk),
.reset_n(reset_n),
.q_out(q_out)

);

assign data_in = ~q_out;
endmodule

///

///
module clock_divider (

input d_in,
input clk,reset_n,

output q_out

As shown in Example 11 for the divide-by-two circuits is described using the
non-synthesizable constructs. The simulation waveform for the design is shown in
the Fig. 4.14. The synthesis outcome is shown in the Fig. 4.15.

Example 11 Testbench to check for the clock division

Fig. 4.14 Waveform for Example 11

4.6 Frequency Divider 67

Fig. 4.15 ASIC
divide-by-two clock logic

///

module divide_by_2_test;

// Inputs
reg clk;
reg reset_n;

// Outputs
wire q_out ;

// Instan ate the Unit Under Test (UUT)
clock_divider uut (

.clk(clk),

.reset_n(reset_n),

.q_out(q_out)
);

ini al begin
// Ini alize Inputs
clk = 0;

reset_n =1'b0;

#100;

68 4 Sequential Design Concepts

// Wait 100 ns for global reset to finish

reset_n = 1'b1;

#500 reset_n = 1'b0;

end

always # 10 clk = ~ clk;

endmodule

Issue of using above RTL during ASIC Design: With above Verilog RTL we
can get the divide by 2 sequential circuits which are sensitive to rising edge of
the clock. But the design has issue due to use of the NOT gate as it increases
the data required time. This limits the maximum frequency of the design.

How to fix the Issue: To improve themaximum frequency for the clock divider
use fed the complement of Q from the flip-flop directly to data input D. For
more details refer Chaps. 5 and 10.

4.7 Synchronous Design

In the synchronous design the all sequential element that is D flip-flops uses the clock
generated from the common clock source. For the better performance of the ASIC
and to have the clean timing, it is recommended to use the synchronous design.

The 2-bit binary up-counter which is used to count the sequence 00-01-10-11-
00…. is described in the RTL (Example 12) using the synthesizable constructs. The
RTL design uses the asynchronous active low reset.

Example 12 RTL description of the 2-bit synchronous counter

4.7 Synchronous Design 69

Fig. 4.16 2-bit synchronous binary up-counter schematic

if (~ reset_n)

Q <= 2'b00;

else

if (Q== 2'b11)

Q <= 2'b00;

else

Q <= Q+1;
end
endmodule
///

///
module Binary_up_counter (

input clk,reset_n,
output reg [1:0] Q
);

always @ (posedge clk or negedge reset_n)
begin

70 4 Sequential Design Concepts

Fig. 4.17 Timing diagram of the 2-bit binary up-counter

Fig. 4.18 Asynchronous counter as clock divider

The RTL description (Example 12) infers the logic and shown in Fig. 4.16. The
simulation waveform for the 2-bit counter is shown in Fig. 4.17.

4.8 Asynchronous Design

In the asynchronous design the clock of all the sequential elements is not from the
common clock source.As shown inFig. 4.18, the design uses the rising edge-sensitive
toggle flip-flops, and the design is used to generate the internal clocks.

If the clock frequency at clk input is 500MHz, then the internally generated clocks
are the following

• Clock output Q0 having frequency of the 250 MHz.
• Clock output Q1 having frequency of the 125 MHz.
• Clock output Q2 having frequency of the 62.5 MHz.
• Clock output Q3 having frequency of the 31.25 MHz.

The issue with the design is the asynchronous clocking, and hence, it is very
dangerous to use such kind of designs in the ASIC.

4.9 RTL Design and Verification for Complex Designs

For the complex designs during the RTL design and verification phase, use the
following strategies.

4.9 RTL Design and Verification for Complex Designs 71

1. Try to understand the architecture and micro-architecture and partition the logic
to have the efficient RTL description using the moderate gate count blocks.

2. Use the bottom-up approach and during the top-level design try to deploy the
synchronizers if required.

3. Use the synthesizable constructs during the RTL design and non-synthesizable
constructs during the RTL verification.

4. Use the blocking assignment to model the combinational logic (glue logic
between the registers) and non-blocking assignments for the sequential designs

5. Do not mix the blocking and non-blocking assignments.
6. Use the optimization constraints at the RTL level to improve the performance.

Refer the subsequent chapters to have better understanding of the design and
optimization.

7. Have the better verification architecture and the verification planning for the
design.

8. Understand the coverage requirements and work on the verification strategies to
achieve the specified coverage goals.

The discussion on the RTL verification topic is not an objective of the book.
The subsequent chapters of this book are useful to understand the ASIC design
terminology and concepts.

4.10 Exercises

1. Implement the RTL using the synthesizable Verilog constructs to infer following
logic (Fig. 4.19).

2. Implement the RTL using the synthesizable Verilog constructs to infer following
logic. Use asynchronous active low reset and positive edge-sensitive elements
(Fig. 4.20).

3. Implement the RTL using the synthesizable Verilog constructs to infer following
logic (Fig. 4.21).

Fig. 4.19 Exercise 1

72 4 Sequential Design Concepts

Fig. 4.20 Exercise 2

Fig. 4.21 Exercise 3

4.11 Chapter Summary

The following are the important points to conclude the chapter.

1. Use the non-blocking assignments to model the sequential logic.
2. Use the blocking assignments to model the combinational logic.
3. Do not mix blocking and non-blocking assignments.
4. The resets are of the two types asynchronous: reset and synchronous reset.
5. In the synchronous design, the all sequential element that is D flip-flops uses the

clock generated from the common clock source.
6. In the asynchronous design, the clock of all the sequential elements is not from

the common clock source.
7. Avoid the internally generated clocks or asynchronous clocking in the design.

Chapter 5
Important Design Considerations

If we use the synchronous sequential designs or any IP in the design or to finalize the
architecture and micro-architecture, then we need to work out on various strategies.
Few of them are listed below:

1. Functionality of the design and compatibility
2. Parallelism, concurrency, and pipelining strategies
3. External IO and high-speed interfaces
4. Area and initial gate count estimation for the design
5. Speed and maximum frequency requirements
6. Power requirements and use of the low-power design cells
7. Clock network and latency
8. Interface and IO delays and modeling strategies
9. Effect of the on-chip variation on the design
10. IPs required and timing requirements
11. Memory requirements and different micros
12. Top and block-level design constraints.

By considering all above, the team of experienced technical members finalizes
the architecture and micro-architecture of the ASIC/SOC design.

The chapter discusses few of the design considerations for ease of understanding
of the architecture and the case studies.

During the architecture and micro-architecture design, important considerations are speed, power,
and area.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_5

73

74 5 Important Design Considerations

5.1 Timing Parameters

Important sequential circuit timing parameters are shown in Fig. 5.1 for rising edge-
sensitive flip-flop, and they are:

1. Setup time (tsu)
2. Hold time (th)
3. Propagation delay of flip-flop (tpd).

These timing parameters for the flip-flop are discussed in this section.

• Setup Time (tsu): The minimum amount of time for which the data input of the
flip-flop should maintain the stable value prior to arrival of the active edge of the
clock is called as setup time.
Here, the active edge indicates the low to high transition for rising edge (positive
edge)-sensitive flip-flop, and the high to low transition for falling edge (negative
edge)-sensitive D flip-flop.
During the setup time window if the data input changes either from 1 to 0 or
vice versa, then the flip-flop output will be metastable which indicates the setup
violation. For more details, refer Chaps. 12 and 15.

• Hold Time (th): The minimum amount of time for which the data input of the
flip-flop should maintain the stable value after the arrival of the active edge of the
clock is called as hold time.
Here, the active edge indicates the low to high transition for rising edge (positive
edge)-sensitive flip-flop, and the high to low transition for falling edge (negative
edge)-sensitive D flip-flop.
During the hold time window if the data input changes either from 1 to 0 or
vice versa, then the flip-flop output will be metastable which indicates the hold
violation. For more details, refer Chaps. 12 and 15.

Fig. 5.1 Timing parameters
for D flip-flop

5.1 Timing Parameters 75

Fig. 5.2 Level
synchronization concept

Fig. 5.3 Timing sequence
for Fig. 5.2

• Propagation Delay of Flip-Flop (tpd = tcq): The amount of time required for
which the flip-flop to generate the valid output after the arrival of the active edge
of the clock is called as propagation delay of flip-flop.
The propagation delay is also called as the clock to q delay, and it is also referred
as tcq.

5.2 Metastability

If the data input of the design shown in Fig. 5.2 is connected to the other module
whose clk is generated from the different clock sources, then the first flip-flop output
will go into metastable state. The meta_data indicates the flip-flop data is metastable
and hence there is timing violation for the first flip-flop.

The metastability indicates the data output is not valid and to get the valid data
output the design needs to use the multiflop-level synchronizers.

The timing sequence of the data sampled by the first flip-flop and the output of
the second flip-flop is shown in Fig. 5.3. As shown, the output of the first flip-flop
is in the metastable state and the data_out output from the output flip-flop is having
the valid legal state.

5.3 Clock Skew

If multiple clocks are in the ASIC design, then the clock distribution and clock
tree synthesis will play very important role to balance the clock skew between the
different clock inputs of various blocks.

76 5 Important Design Considerations

Fig. 5.4 Synchronous design

The clock tree synthesis which is named as CTS in this book is discussed in
Chap. 16. To get basic details about the clock network, let us understand about the
clock skew.

If two different clocks in design arrive at the different time instances, then the
design has the clock skew.

The reason for clock skew is the routing delay that is wire delay for the single
clock domain design. Consider the figure shown, and let us consider that the clk edge
at the launch flip-flop is arrived at time instance ‘t0’ and at capture flip-flop at time
instance ‘t2’. As the clock arrival time is different for this synchronous design, there
is phase shift between the clk1 and clk2 and we can consider this as clock skew.

Another reason we consider is the aging of the oscillator; then, there is cycle-
to-cycle frequency variation of the clock generated from the oscillator and hence
difference in the arrival time can be named as jitter.

In Fig. 5.4, the clock skew is due to the interconnect delays between the clk1 pin
and clk2 pin.

Practically in the ASIC design, we experience the two different types of
skew (Fig. 5.5).

1. Positive clock skew: It indicates the launch flip-flop clock (clk1) is triggered first
and then the capture flip-flop clock (clk2) arrives. Figure describes the tskew, and
it is the difference between the arrival times of clk1 and clk2. In other words, we
can imagine the positive clock skew is the data and clock running in the same
direction and positive clock skew is better for the setup time but not good for
hold time as there is positive margin to manage for!

2. Negative clock skew: It indicates the launch flip-flop clock (clk1) is triggered
last and the capture flip-flop clock (clk2) is triggered first. Figure describes the
tskew, and it is the difference between the arrival times of clk1 and clk2. In other
words, we can imagine the negative clock skew is the data and clock running in
the opposite direction and negative clock skew is better for the hold time but not
good for setup time!

In the ASIC design we always experience the clock skew due to jitter or due to
interconnect that is wire delays and the following are important points which
we should know.
1. Positive clock skew is good for the setup time but bad for the hold time.

5.3 Clock Skew 77

Fig. 5.5 Skew in the design

2. Negative clock skew is good for the hold time and bad for setup time.

5.3.1 Positive Clock Skew

As discussed before the positive clock skew where the launch flip-flop is triggered
first and then capture flip-flop. There is margin of the buffer delay between the launch
clock and capture clock and can be used to improve upon the required frequency for
the design. The frequency calculation is discussed in Chap. 6.

78 5 Important Design Considerations

Fig. 5.6 Positive clock skew

Figure 5.6 shows the synchronous design with the positive clock skew and skew
between the clk1 and clk2 is tbuffer.

Let us find the data required time and data arrival time.

Data Arrival Time (AT) = tpff1 + tcombo

Data Required Time (RT) = Tclk + tbuffer − tsu

where the T clk is clock time period or clock to q delay, tbuffer is buffer delay, tsu is
setup time of flip-flop, tpff1 is flip-flop propagation delay, and tcombo is combinational
delay.

Setup slack is the difference between the data required time and data arrival
time and should be positive. The positive setup slack indicates there is no any setup
violation in the design.

To avoid the setup violations in the design, the design should have the fast data,
fast launch clock (clk1), and slow capture clock (clk2). That is, the actual arrival of
data should be fast as compared to the data required time (Fig. 5.7).

Fig. 5.7 Relationship between the launch and capture clock for the positive clock skew

5.3 Clock Skew 79

5.3.2 Negative Clock Skew

As discussed before, the negative clock skew where the launch flip-flop is triggered
last and the capture flip-flop is triggered first. As there is margin of the buffer delay
between the launch clock and capture clock, this reduces the maximum frequency
for the design. The frequency calculation is discussed in Chap. 6.

Figure 5.8 shows the synchronous design with the negative clock skew and skew
between the clk1 and clk2 is tbuffer.

Let us find the data required time and data arrival time.

Data Arrival Time (AT) = tbuffer + tpff1 + tcombo

Data Required Time (RT) = Tclk − tsu

where the T clk is clock time period or clock to q delay, tbuffer is buffer delay, tsu is
setup time of flip-flop, tpff1 is flip-flop propagation delay, and tcombo is combinational
delay (Fig. 5.9).

Fig. 5.8 Negative clock skew

Fig. 5.9 Relationship between the launch and capture clock for the negative clock skew

80 5 Important Design Considerations

Fig. 5.10 Register-to-register path in synchronous design

5.4 Slack

During the ASIC design cycle, two terms are used for the slack that is setup slack
and hold slack (Fig. 5.10).

5.4.1 Setup Slack

Setup slack is the difference between the data required time and data arrival time and
should be positive. The positive setup slack indicates there is no any setup violation
in the design.

Data Arrival Time (AT) = tbuffer + tpff1 + tcombo

Data Required Time (RT) = Tclk − tsu
Setup Slack = RT− AT

5.4.2 Hold Slack

Hold slack is the difference between the data arrival time and data required time and
should be positive. The positive hold slack indicates there are no any hold violations
in the design.

5.5 Clock Latency

The clock is generated form the PLL for the single clock domain designs and for
the multiple clock domains we may need to have the multiple PLLs. The discussion
on the PLL is ruled out during this book as it is analog component and needs to be
designed by analog design team.

5.5 Clock Latency 81

Clock
Buffer PLL

Fig. 5.11 Clock network latency

The clock network introduces the latency and it is effectively the time required
for the clock to reach to the chip and the clock latency is due to the clock network
delay during the clock distribution (Fig. 5.11).

5.6 Area for the Design

The overall area for the ASIC is due to the standard cell, macros, and IP cores.
During theASICdesign ofmillion or billion gates, the area constraints andbetter floor
planning to get the desired performance play an important role. The area optimization
we can think at various design phases such as:

1. During the architecture design by describing the better strategies for different
functional block interactions

2. During the RTL design by using tool-based directives and commands and using
the resource sharing techniques

3. In the physical design during the floor plan stage by having strategies to place the
functional blocks to minimize routing delays and area due to use of the routing
resources.

5.7 Speed Requirements

The speed is another important consideration during the design of ASIC. The ASIC
performance can be improved by using different speed improvement techniques.
For example, consider that the processor design works at the operating frequency
of 500 MHz and we have the challenge to improve the design frequency. In such
circumstances, various strategies can be used during the ASIC design cycle and few
of them may be

82 5 Important Design Considerations

1. Having better partitioning at the sequential boundaries during the architecture
and micro-architecture design.

2. Having the initial floor plan where the interdependent blocks can be placed close
to each other to minimize the area and hence the routing delay and to improve
the speed.

3. During the RTL design stage, use the balance register and register duplication,
optimization commands to improve on the design performance. But they may
affect the logic area.

4. During the RTL design, use the registered inputs and outputs to have the better
performance for the design.

5. Wherever it is feasible, use the pipelining concepts and architectures.
6. If FSM designs and controllers need to be used in the design, then try to work on

the control and data path synthesis for the clean timing and better performance.
7. Try to use the synchronous designs as they are faster as compared to the

asynchronous designs.
8. Try to avoid the internal clock generators; instead of that, think about the clock

tree and optimize the clock tree during the CTS.
9. During the routing stage, try to work on the tool-based improvement techniques

as enabling tool directives can play especially important role to balance the skews.

5.8 Power Requirements

For any kind of ASIC or SOC design, the important consideration is power and the
objective of the design team is to reduce the leakage and dynamic power. The power
planning by considering the power constraints is done during the physical design.
The power optimization techniques should be used at the different stages during the
ASIC design flow.

1. Having the low-power-aware architecture for the ASIC.
2. Use the UPF at various design levels.
3. During the RTL to minimize the dynamic power, use the dedicated clock gating

cells.
4. The power can be also optimized during the RTL stage by avoiding unnecessary

assignments and toggling of the data values.
5. Have the better power planning and power sequencing for the multiple power

domains during the physical design.
6. Have the better strategies for the power shutdown during the physical design.

For more details, refer to Chap. 7.

5.9 What Are Design Constraints? 83

5.9 What Are Design Constraints?

The design constraints are basically the design rule constraints and optimization
constraints. The constraints we can consider as block-level constraints, top-level
constraints, and chip-level constraints.

Design Rule Constraints (DRC): These constraints we can consider as the foundry-
laid rules and should be met. During the physical design, we will carry out DRC to
check for whether all the foundry-laid rules meeting or not. Layout is clean indicates
no DRC violations. These constraints are mainly

• Transition
• Fanout
• Capacitance.

Optimization Constraints: These constraints are used during the design and
optimization phases. These constraints are mainly

• Area
• Speed
• Power.

Mainly using the Synopsys DC, we will use the area and speed constraints and
will try to optimize design during the various optimization phases.

The physical design tool such asSynopsys ICCompiler uses the area, speed, power
constraints to meet the constraints to have the clean chip layout. These constraints
are discussed in Chap. 10.

5.10 Exercises

Few of the exercises are useful during the architecture and RTL design of the
processor.

1. Design the ALU to perform the arithmetic and logic operations on the two 8-bit
numbers. Consider arithmetic operations as the addition, subtraction, increment,
decrement, and logic operations such as OR, AND, XOR, and complement.
Sketch the logic and try to work on the area optimization strategies using the
digital design concepts.

2. Find the data required time and data arrival time for the following design
(Fig. 5.12)?

84 5 Important Design Considerations

Fig. 5.12 Exercise 2

5.11 Chapter Summary

The following are few of the important points to conclude the chapter.

1. The minimum amount of time for which the data input of the flip-flop should
maintain the stable value prior to arrival of the active edge of the clock is called
as setup time.

2. The minimum amount of time for which the data input of the flip-flop should
maintain the stable value after the arrival of the active edge of the clock is called
as hold time.

3. The propagation delay of flip-flop is also called as clock (clk) to output (q), that
is, tclktoq delay.

4. Skew is the difference between the arrival times of clock.
5. The positive clock skew is the data and clock running in the same direction, and

positive clock skew is better for the setup time but not good for hold time!
6. The negative clock skew is the data and clock running in the opposite direction,

and negative clock skew is better for the hold time but not good for setup time!
7. Setup slack is the difference between the data required time and data arrival time

and should be positive.
8. Hold slack is the difference between the data arrival time and data required time

and should be positive.

Chapter 6
Important Considerations for ASIC
Designs

The ASIC design phase of the architecture and micro-architecture design plays the
important role to yield better performance for the ASIC chip. The design should
have the less area, more speed, and low power that are demand of the chip. In
such scenarios, we need to understand the following considerations to finalize the
architecture.

1. Clocking sources
2. Clock latency and network latency
3. Single and multiple clock domain designs
4. Low power-aware architecture
5. Impact of skew on the speed
6. Clocking and reset policies
7. Synchronization and data integrity checks.

Few of these concepts are discussed in the previous few chapters, and few will
be discussed in the chapter so that readers can have better understanding of the
architecture and micro-architecture designs!

6.1 Synchronous Design and Considerations

As discussed in Chaps. 4 and 5 we always used the synchronous design as asyn-
chronous designs are prone to the glitches and slower. The asynchronous clocking
introduces the delays in the triggering of the unit and not recommended in the ASIC
designs. Practically to understand the synchronous design, let us try to understand
the logic shown in the figure. As shown, the register to register (reg to reg) path
frequency is one of the deciding factors for the synchronous design.

ASIC is Application-Specific Integrated Circuits. The understanding of the important design
considerations plays an important role during design phase!

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_6

85

86 6 Important Considerations for ASIC Designs

Fig. 6.1 Synchronous sequential circuit

We have the source flip-flop which launches the data, and the capture flip-flop
captures the data. The launch clock is clk1, and capture clock is clk2. The maximum
operating frequency for the design indicates that the frequency for which all the
timing paths in the design doesn’t have any kind of timing violations. The timing
paths are discussed in the next session and during the constraint definition inChap. 10.

What is requirement for correct functionality?

The destination flip-flop data should be present prior to arrival of the active edge
of the clock the design will not have any kind of the setup violation and that is the
requirement for the design. So, the data required time (RT) is T − tsu, and the actual
data arrival time (AT) depends on the propagation delay of D flip-flop (tctoq = tpff)
and the combinational delay (tcombo). So, the actual data arrival time is (tctoq + tcombo),
and this limits the overall frequency for the design.

What is maximum clock frequency for synchronous design?

The setup slack is difference between the RT and AT and should be positive to avoid
the timing violations in the design.

Setup Slack >= 0

RT − AT >= 0

(T − tsu) − (tctoq + tcombo) >= 0

T = tctoq + tcombo + tsu

The flip-flop timing parameters are tsu as setup time, tctoq as flip-flop delay and tcombo

as combinational delay.

where T is clock time duration and the f max is maximum frequency for the design
which is equal to f max = 1/T (Fig. 6.1).

6.2 Positive Clock Skew and Impact on Speed

As discussed in the previous chapters, the positive clock skew is better for the setup
as the capture flip-flop is triggered after the buffer delay but not good for the hold.

6.2 Positive Clock Skew and Impact on Speed 87

Fig. 6.2 Positive clock skew

Fig. 6.3 Timing diagram for positive clock skew

The register to register path with the positive clock skew between the clk1 and
clk2 is shown in Fig. 6.2. As shown, the clk2 is triggered after the tbuffer time delay
and hence the chance of improving the clock frequency for the design (Fig. 6.3).

Consider the flip-flop timing parameters for the required technology node;
the design works at the maximum clock frequency and the maximum frequency
calculation is shown below.

Setup Slack >= 0

RT − AT >= 0

(T + tbuffer − tsu) − (tctoq + tcombo) >= 0

T = tctoq + tcombo + tsu − tbuffer

The flip-flop timing parameters are tsu as setup time, tctoq as flip-flop delay tcombo as
combinational delay, tbuffer as buffer delay.

88 6 Important Considerations for ASIC Designs

6.3 Negative Clock Skew and Impact on the Speed

In the negative clock skew the source flip-flop is triggered last and the capture flip-
flop is triggered first. Here, we assume that the source flip-flop is the launch flip-flop
and capture flip-flop as destination flip-flop.

The register to register path with the negative clock skew between the clk1 and
clk2 is shown in Fig. 6.4. As shown, the clk1 is triggered after the tbuffer time delay,
and hence, it reduces the overall operating frequency for the design (Fig. 6.5).

Consider the flip-flop timing parameters for the required technology node.
The design works at the maximum clock frequency, and the maximum frequency
calculation is shown below.

Setup Slack >= 0

RT − AT >= 0

(T − tbuffer − tsu) − (tctoq + tcombo) >= 0

T = tctoq + tcombo + tsu + tbuffer

The flip-flop timing parameters are tsu as setup time, tctoq as flip-flop delay and tcombo

as combinational delay, tbuffer as buffer delay.

Fig. 6.4 Negative clock skew

Fig. 6.5 Timing diagram for negative clock skew

6.4 Clock and Network Latency 89

Fig. 6.6 Buffers in the clock network

Fig. 6.7 Clock network latency and buffers

6.4 Clock and Network Latency

The clock network introduces the latencies in the design, and during the physical
design, it is essential to optimize for the clock tree so that the distribution of clock
can be with uniform clock skew.

If the clock tree strategies are not efficient and tool is not able to optimize for the
clock network, then due to issues in the clock propagation, the design may have the
issues due to timing violations.

It is real nightmare for the physical design team to understand the fix issues during
the signoff static timing analysis (Figs. 6.6 and 6.7).

6.5 Timing Paths in the Design

Let us try to understand the timing paths in the synchronous design. Consider the
design shown in Fig. 6.8 which has mainly four timing paths, and they are named as

1. Input to reg path
2. Reg to output path
3. Reg to reg path
4. Input to output path.

90 6 Important Considerations for ASIC Designs

Fig. 6.8 Synchronous design

Fig. 6.9 Input to reg path

To identify the timing paths in the design, the designer should know the start point
and end point.

Start point: The clock input of the sequential element (clk), data inputs of the sequen-
tial design is treated as the start point, and the tool algorithm identifies initially the
start points for the design and then end points.

End Point: The end point of the design is the output of the sequential element or data
input of the sequential element D flip-flop (D).

6.5.1 Input to Reg Path

It marked as path 1 in the figure, and it is from the input port data_in of the design
to the D input of the sequential element (Fig. 6.9).

6.5.2 Reg to Output Path

It marked as path 2 in the figure, and it is from the clock pin clk2 of the flip-flop to
the data_out1 of the sequential element (Fig. 6.10).

6.5 Timing Paths in the Design 91

Fig. 6.10 Reg to output path

Fig. 6.11 Reg to reg path

Fig. 6.12 Combinational path

6.5.3 Reg to Reg Path

It marked as path 3 in the figure, and it is from the clock pin clk1 of the flip-flop to
the data input of the D flip-flop that is sequential element 2 (Fig. 6.11).

6.5.4 Input to Output Path

It is unconstrained path and also called as combinational path. It is marked as path
4, and it is from data_in of the design to the data_out2 of the design (Fig. 6.12).

6.6 Frequency Calculations

To find the maximum operating frequency for the design Fig. 6.13, consider the
timing parameters of flip-flop as

tctoq = 2 ns

tcombo = 2 ns

92 6 Important Considerations for ASIC Designs

Fig. 6.13 Design example-1

tsu = 1 ns

tbuffer = 1 ns

th = 0.5 ns

For the design shown below, the data arrival time is equal to

AT = tctoq + tcombo + tbuffer
= 2 ns + 2 ns + 1 ns = 5 ns (6.1)

The data required time is (RT)

RT = T − tsu + 2 ∗ tbuffer
= T − 1 ns + 2 ∗ 1 ns

= T + 1 ns (6.2)

Setup slack is RT-AT and should be greater than or equal to zero.
Using Eqs. 6.1 and 6.2, we get the T as 4 ns; therefore, the operating frequency

for the design is 250 MHz.
For the design shown in Fig. 6.14, the clock buffer delay is common and hence can

be considered as clock latency from the source and can be specified in the constraints
so data arrival time is equal to

Fig. 6.14 Design example-2

6.6 Frequency Calculations 93

AT = tctoq + tcombo + tbuffer
= 2 ns + 2 ns + 1 ns

= 5 ns (6.3)

The data required time is (RT)

RT = T − tsu + tbuffer
= T − 1 ns + 1 ns

= T (6.4)

Setup slack is RT-AT and should be greater than or equal to zero.
Using Eqs. 6.3 and 6.4, we get the T as 5 ns; therefore, the operating frequency

for the design is 200 MHz.

6.7 What Is On-Chip Variations

Practical ASIC designs will have the on-chip variation that is also called as PVT
variation where P is process, V is voltage and T is temperature.

• Process: This specifies the process, and in simple words, it indicates the oxide
thickness, device length and other parameters as the doping concentrations.

• Voltage: Every chip operates at specific voltage, and this parameter indicates the
voltage level at which chip operates.

• Temperature: This parameter indicates the operating temperature for the chip.

The variation of the operating parameters PVT is responsible to have the different
operating conditions such as

1. Min
2. Max.

That is, in other words, we need to work on the best case, worst case and typical
case scenarios during design synthesis and timing analysis.

The operating conditions are defined in the library, and they indicate the PVT
and delays. The library is characterized for the specific operating conditions. For the
on-chip variation that is for another operating condition, the derate factor can be used
during the synthesis and timing analysis.

Library design and cell characterization is out of scope as per objective of this
book is concern, but the library developers can specify the number of operating
conditions in the library.

94 6 Important Considerations for ASIC Designs

Fig. 6.15 Exercise-1

6.8 Exercises

1. Consider the design shown in the figure and find out maximum frequency for the
design. Consider timing parameters as? (Fig. 6.15)

tctoq = 2 ns

tcombo = 2 ns

tsu = 1 ns

tbuffer = 1 ns

th = 0.5 ns

6.9 Chapter Summary

The following are important points to conclude the chapter.

1. Use the synchronous design as asynchronous designs are prone to the glitches
and slower.

2. In the negative clock skew, the source flip-flop is triggered last and the capture
flip-flop is triggered first.

3. In the positive clock skew, the source flip-flop is triggered first and the capture
flip-flop is triggered last.

4. Four timing paths are named as

6.9 Chapter Summary 95

• Input to reg path
• Reg to output path
• Reg to reg path
• Input to output path

5. ASIC designs will have the on-chip variation that is also called as PVT variation
where P is process, V is voltage and T is temperature.

Chapter 7
Multiple Clock Domain Designs

Consider the ASIC design scenario in which the requirement is to have the different
blocks for the complex designs, and few of these blocks are

1. Processor
2. Memories
3. Floating-point engine
4. Memory controllers
5. Bus interfaces
6. High-speed interfaces.

Consider that the processor and memories working on the operating frequency
of 500 MHz and the floating-point engine with the memory controller works at the
operating frequency of the 666.66MHz. The bus interfaces and high-speed interfaces
working on the operating frequency of 250 MHz that is the design have the multiple
clocks and are treated as multiple clock domain design.

7.1 General Strategies for Multiple Clock Domain Designs

As discussed earlier, the issue in the multiple clock domains is while transferring of
the data and control signals, and it has impact on the data integrity. The following
strategies can be helpful during the ASIC design phase.

1. Try to have strategies for the data and control path optimization.
2. Try to have the strategy to define are create the multiple clock domain groups.
3. Try to have strategies to deploy the synchronizers while passing the control

signals between the multiple clock domains.

ASIC chips have many clocks, and clock domain managament is important during the ASIC design
cycle.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_7

97

98 7 Multiple Clock Domain Designs

4. Try to use the data path synchronizers using FIFO and buffers to improve the
data integrity.

The subsequent sessions discuss important issues and the strategies and their use
during the multiple clock domain designs.

7.2 What Are Issues in the Multiple Clock Domain Design

If we consider the moderate gate count design or the processor core which works
using the single clock and the design, it may have the timing violations during the
layout stage due to additional interconnect delays. But such kind of designs may
meet the timing and performance through the architecture, RTL, synthesis, and the
tool-based optimization tweaks.

Now consider the design which demands the need of the multiple clocks as shown
in the Figure and let us try to understand the issues in the design!

1. Due tomultiple clock domains, the data integrity ismajor issues and design needs
to go through the data integrity checks.

2. The flip-flops at the boundary of the clock domains without the use of
synchronizers will have the metastability issues due to setup and hold violations.

3. The design will have timing violations, and it becomes difficult to force the
sequential circuit output into valid legal states.

Let us understand the above using the sequential circuit which has multiple clock
domains. Due to phase difference between the arrival of the clk1 and clk2, the flip-
flop in the second clock domain will have the setup and hold violations that is the
flip-flop output data_out will be metastable. The reason being the q output from the
clock domain 1 can change during the setup and hold window of the clk2 active edge,
and hence the data_out will be forced into the illegal state that is a metastable state
(Fig. 7.1).

The timing sequence is shown in Fig. 7.2.

Fig. 7.1 Multiple clock domain concept

7.3 Architecture Design Strategies 99

Fig. 7.2 Metastable output

7.3 Architecture Design Strategies

Consider the designwhich has three clock domains as shown in Fig. 7.3, andTable 7.1
describes information about the clockdomains operating at various clock frequencies.
ReferChap. 9 formore information on the architecture andmicro-architecture design.

Fig. 7.3 Multiple clock domain architecture

100 7 Multiple Clock Domain Designs

Table 7.1 Multiple clock domain clock groups

Clock domain control Frequency in MHz Description

clk1 500 The clock domain one operating at frequency of
500 MHz

clk2 666.66 The clock domain two operating at frequency of
666.66 MHz

clk3 250 The clock domain three operating at frequency of
250 MHz

As a designer or architect, we need to think about the overall data integrity checks
for the multiple clock domain design and need to have the clean timing for the data
path and control path.

By considering this, we need to deploy the synchronizers to carry the data between
the multiple clock domain designs. The synchronizers such as level, mux, and pulse
are useful while passing the control signal between the multiple clock domain
designs. The asynchronous FIFO can be used as synchronizer to carry the data
between the clock domain and used in the data path.

Following are few of the guidelines whichwe should use during themultiple clock
domain designs to eliminate the CDC errors, where CDC is clock domain crossing

1. AvoidMetastability:While passing the control signal information, use the regis-
tered output as this is useful to avoid the glitches and hazards. The multiple tran-
sitions during single clock cycle can be avoided by using the registered output
logic while passing the control signal. Metastability blocking logic is shown in
Fig. 7.4.

2. Use of MCP: Multicycle path formulation is highly recommended to avoid the
metastability issue while passing the data and control signal information between
the multiple clock domains. In the MCP, the strategy is to create the control
and data pairs to pass the multibit data with the single bit control signal from
sending clock domain to receiving clock domain. The control information can

Register C

0
1

sync_data

clk

data_in

reset reset

setset

Fig. 7.4 Metastability blocking logic

7.3 Architecture Design Strategies 101

be sampled in the receiving clock domain by using the pulse synchronizer, and
data can be passed to the receiving clock domain with or without synchronizers.
This technique is highly effective as the data can maintain the stable value for
multiple cycles and can be sampled in the receiving clock domain by using the
synchronized signal generated by using pulse synchronizer. Across the clock
domain crossing boundaries, following are key points need to be considered.

(a) Control signals must be synchronized using the multistage synchronizers.
(b) Control signals should be free of hazards and glitches.
(c) There should be single transition across clock boundaries.
(d) Control signal should be stable for at least single clock cycle.

The MCP formulation is shown in Fig. 7.5.

3. Use FIFO: The effective technique to pass the multibit control signals or data
information is using asynchronous FIFO. In this technique, the sending clock
domain writes the data into FIFO memory buffer when the FIFO is not full and
receiving clock domain reads the data from the FIFO buffer when the FIFO is
not empty.

Two stage level
synchronizer

Register C

Clock
domain1

clk1

Register C

data_in

control_in

clk2

sync_data

Clock Domain 1 Clock Domain 2

Fig. 7.5 MCP formulation

102 7 Multiple Clock Domain Designs

4. Use Gray Code Counters: In most of the ASIC designs with clock domain
crossing (CDC), it is essential to pass the counter value across the clock domains.
If binary counters are used to exchange the data at the clock domain boundaries,
then due to toggling of one or more than one bit the data exchange can be error
prone. In such scenarios, it is recommended to use the gray code counters to pass
the data across the clock boundaries. In the receiver clock domain, use the gray
to binary code converter to get the original data back!

5. Design Partitioning: While designing the logic for the multiple clock domain
design, partition the design by using the clock groups.

6. ClockNamingConventions: It is recommended to use the clock naming conven-
tions to identify the clock source for better readability. The naming conventions
for the clock should be supported by the meaningful prefix. For example, for
sending clock domain, use clk_s, and for receiving clock domain, use clk_r.

7. Reset Synchronization: For the ASIC designs, it is highly recommended to use
the reset synchronizers.

8. Avoid Hold Time Violations: To avoid the hold time violations, it is recom-
mended to have close look at the architecture and have a strategy while passing
the stable data between the multiple clock cycles.

9. Avoid Loss of Correlation: Across the clock domain boundary, there are several
ways due to which loss of correlation can occur. Few of them are

(a) Multiple bits on the bus
(b) Multiple handshake signals
(c) Unrelated signals

To avoid this, use the clock intent verification technique as these techniques will
ensure the passing of multibit signal across the clock boundaries.

7.4 Control Path and Synchronization

The section discusses various synchronizers and strategies to use them during the
ASIC design.

7.4.1 Level or Multiflop Synchronizer

The control signals passing between the multiple clock domains mainly from the
faster to slower clock domains will experience the timing failure, and the design will
have timing violations. So, the better strategy during the architecture design is to
identify the interface boundaries for the multiple clock domain design and then have
the strategy in the RTL design to use the synchronizers.

7.4 Control Path and Synchronization 103

Fig. 7.6 Two-stage level synchronizer in the control path

The issue of metastability can be addressed by deploying the level synchronizers
(may be y\using two or three flip-flops) while passing the control signals between
the multiple clock domains. Figure 7.6 uses the two-stage level synchronizer logic.

As shown in Fig. 7.6, the level synchronizer is used to pass the control single
q1 from clock domain 1 to clock domain 2. The main design strategy is to pass the
valid output q1 to second clock domain. The level synchronizer is deployed in the
second clock domain to sample the output q1. The input flip-flop in the second clock
domain will be metastable due to violation of the setup or hold time, and this should
be ignored by setting up the EDA tool attributes. The output data_out is valid data,
and the design has the latency of two clocks due to use of the synchronizer.

The timing sequence for design shown in Fig. 7.6 is described below (Fig. 7.7).

Fig. 7.7 Timing sequence with use of the two-stage synchronizer

104 7 Multiple Clock Domain Designs

Fig. 7.8 Level synchronizer

As shown in Fig. 7.7, q1 is output from the first clock domain. On the rising edge
of ‘clk2,’ the output of flip-flop FF1 that is q2 will go to the metastable state due to
violation of either setup or hold time. But the flip-flop FF2 output that is data_out
during the next subsequent clock edge is valid output. Set the false path using the
command

set_false_path –from FF0/q –to FF1/q

The level synchronizers using the two flip-flops are shown in Fig. 7.8 and can be
deployed in the design. The better strategy is to have the RTL description of the level
synchronizers as separate module during the RTL design. The latency introduced
depends upon the number of flip-flops required to drive the output into the valid
legal state.

The piece of the RTL description is described below

always @ (posedge clk)
begin

q<=data_in;
data_out<=q

end

In theASIC design, the issue of data integrity occurs when the control information
needs to be passed from faster clock domain to the slower clock domain. The issue
is due to non-converging of the legal states of the flip-flop outputs while passing the
control signals from clock domain 1 to clock domain 2.

The issue of sampling the data from faster clock domain to the slower clock
domain can be resolved by using pulse stretcher. The level to pulse generator which
works on the positive clock edge is shown in Fig. 7.9.

Another mechanism which is handshake of signals can be used to have the data
convergence.

7.4 Control Path and Synchronization 105

Register A Register B

clk

data_in

data_out_1

data_out

Fig. 7.9 Level to pulse conversion

As shown in Fig. 7.10, the sampled signal in the clock domain 2 is feedback as a
handshaking signal to clock domain 1. This handshake mechanism is like acknowl-
edgement or notification to the faster clock domain 1 that the control signal passed
by the faster clock domain is successfully sampled by the slower clock domain. In
most of the practical scenarios, this kind of mechanism is used, and even the faster
clock domain can send another control signal after receiving the valid notification or
acknowledgement signal from the slower clock domain.

Register A

clk1

data_in

data_out_1

Two stage level
Synchronizer

Two stage level
Synchronizer

clk2

Clock domain1
Clock domain2

Fig. 7.10 Handshake mechanism for control signals

106 7 Multiple Clock Domain Designs

Register A Register B Register C

XOR
Logic
Gatedata_in

clk

Sync_data

Fig. 7.11 Pulse synchronizer

7.4.2 Pulse Synchronizers

This type of synchronizer uses the multistage level synchronizer where the output
of two-stage level synchronizer is sampled by the output flip-flop. This kind of
synchronizer is also named as toggle synchronizer and used to synchronize the pulse
generated in the sending clock domain into the destination clock domain. While
passing the data from faster clock domain to the slower clock domain, the pulse can
be skipped if two-stage level synchronizers are used. In such scenarios, the pulse
synchronizers are efficient and useful. The pulse synchronizer diagram is shown in
Fig. 7.11.

7.4.3 MUX Synchronizer

Use the pair of the data and control signals while sending the information from
clock domain 1 to clock domain 2. Use the multiple bit data and use the single bit
control signal. At the receiving end depending on the ratio of the sending clock and
receiving clock, use the level or pulse synchronizer to generate the control signal for
the multiplexer. This technique is like the MCP and effective if the data is stable for
multiple clock cycles across the clock boundaries. The diagram is shown in Fig. 7.12.

7.5 Challenges in the Multiple Bit Data Transfer

Passing multiple control signals between the multiple clock domains is one of the
important challenges. The issue is the different time of the arrival of these control
signals If the arrival of these control signal is not managed properly, then the real
issue is due to the skew. Consider the scenario shown in Fig. 7.13, where ‘enable’
‘load_en’ and ‘ready’ need to be passed from one of the clock domains to another
clock domain. In such scenario, if independent level synchronizers are used, then

7.5 Challenges in the Multiple Bit Data Transfer 107

Clock
domain1

clk1

data_in

control_in

clk2

sync_data

Two stage level
synchronizer

Register C
Register C

Clock Domain 1 Clock Domain 2

Fig. 7.12 Mux synchronizer

Two stage level
Synchronizer

Two stage level
Synchronizer

Two stage level
Synchronizer

clk2

Sequen al logic

clk2

data_in

data_out

ready

load_en

enable

Fig. 7.13 Sampling of the multiple signals in the receiver clock domain

108 7 Multiple Clock Domain Designs

Register A

clk1

cons_sig
Combo

logic

enable

load_en

ready

Two stage level
Synchronizer

clk2

Sequen al

Logic

cons_sig

data_in

data_out

Fig. 7.14 Consolidated control signal passing in the multiple clock domain

there might be synchronization failure at the receiving end due to skew (different
arrival time of these signals).

Consider that one of the control signal, for example, enable arrives late, then there
may be synchronization failure in the control path, and to avoid this group these three
control signals and try to pass the common signals between the clock domain. The
strategy is shown in Fig. 7.14.

7.6 Data Path Synchronizers

The techniques used to pass the multiple bits of the data between the clock domains
are

1. Handshaking mechanism
2. FIFO memory buffers.

7.6.1 Handshaking Mechanism

Use of the handshake mechanism is one of the techniques useful while passing of
the multibit signals between the clock domain. Consider Fig. 7.15 as shown, the
transmitter operates at clk1, and receiver operates at clk2. The data can be passed
from transmitter to receiver.

Receiver clock domain can generate the handshake signals such as data valid and
device ready. So, the purpose is to notify the transmitter that valid data is available
on the bus and the device is not ready to receive the new data.

Handshake Signal Datavalid It is active high handshake signal from clock domain
2 and indicates that the data transmitted is valid data and receiver needs few clocks
to sample this data. The clock latency while transferring the data is dependent upon

7.6 Data Path Synchronizers 109

Transmi er

Clock domain 1

Receiver

Clock domain 2

clk2clk1

datavalid

dataready

data

Fig. 7.15 Block diagram for handshake mechanism

the number of flip-flops used in the synchronizer, and the poor latency is one of the
biggest disadvantages of the handshake mechanism.

Handshake Signal Deviceready It indicates that the receiver is ready to accept the
new data when the data valid is de-asserted and the device ready can go high to notify
transmitter that place new data on the data bus.

If we have the FSM controllers in the multiple clock domains, then design the
architecture to establish synchronization by using the request and acknowledge (ack)
signals. For the FSM control, handshake mechanism is shown in Fig. 7.16.

Sender FSM Receiver FSM
request

ack
Two stage level
synchronizer

Two stage level
synchronizer

clk1 clk2

Fig. 7.16 FSM handshaking mechanism

110 7 Multiple Clock Domain Designs

7.6.2 FIFO Synchronizer

FIFOs are useful as data path synchronizer is used to exchange the data between
multiple clock domains. The sender clock domain or transmitter clock domain can
write the data into the FIFO memory buffer using write_clk if FIFO memory buffer
is not full and receiver clock domain can read the data by using the read_clk if FIFO
memory buffer is not empty (Fig. 7.17).

The FIFO consists of the following blocks

1. Memory: memory buffer
2. Write Clock Domain: write domain logic which is working on write_clk
3. Read clock Domain: read domain logic which is working on read_clk
4. Flag Logic: empty and full flag generation logic.

The FIFO with the associated logic blocks is shown in Fig. 7.17.
How to get the depth of the FIFO?
Consider the write clock domain works at operating frequency of 250 MHz and

read clock domain at 100 MHz and no latency then to transfer the burst of the 50
bytes use following calculations

1. Write clock time: T1 = 1/250 MHz = 4 ns.
2. The Time Required to Write Burst of 50 Bytes of data= 4 ns*50= 200 ns
3. Read Clock Time: T2 = 1/100 MHz = 10 ns
4. Number of Reads with 10 ns = 200 ns/10 ns = 20
5. Depth of FIFO = 50–20 = 30 Bytes.

FIFO (Memory Buffer)

Write

logic

Read

logic

Write full genera�on logic Read empty genera�on logic

write_inc

write_clk

write_full

waddr raddr

write_data read_data

read_inc

read_clk

read_empty

Fig. 7.17 Block diagram of FIFO

7.6 Data Path Synchronizers 111

Register A Register B Register C

clk1

Binary to

gray
Gray to
Binary

clk2

Fig. 7.18 Gray encoding technique

If read and write latency are specified, then try to modify the above steps to get
the depth of FIFO.

7.6.3 Gray Encoding

While passing the multiple bit of the data or control signals, it is essential to use the
gray encoding technique as this technique guarantees about the only one-bit change
in two successive numbers.

For example, if 4-bit binary data needs to be passed between the multiple clock
domains, then one or more than one bit toggles and hence more power is required
and the chance of error. So to avoid this and to improve the performance, use the
binary to gray code converter logic in the transmitter or sender clock domain. This
guarantees only one-bit change across the clocking boundary. To get the original
binary data in the receiver clock domain, use the gray to binary code converter. The
technique is shown in Fig. 7.18.

7.7 Summary and Future Discussions

The following are few important points to conclude the chapters.

1. Deploy the data path synchronizers while passing the data between the multiple
clock domains.

2. Deploy the control path synchronizers while passing the control signals between
the multiple clock domains.

3. Multicycle path formulation is highly recommended to avoid the metastability
issue while passing the data and control signal information across the clock
domains.

112 7 Multiple Clock Domain Designs

4. The common and effective technique to pass the multibit control or data
information is the use of asynchronous FIFOs.

5. For multibit control signal passing between the multiple clock domains, use the
techniques by grouping these signals to avoid the skew due to different arrival
time.

Chapter 8
Low Power Design Considerations

The ASIC design constraints are area, speed, and power. The issues related to the
area and speed we have already discussed in the previous few chapters, and in the
subsequent section we will discuss about the low-power designs. Following are few
of the important goals of the ASIC designer to optimize for the power

1. Have the design strategies using the low-power cells.
2. Plan for the overall power requirements and have the better power planning

during the physical design.
3. Try to optimize for the leakage and dynamic power using various techniques

during power optimization.
4. Use the UPF at various stages with the power compilers.
5. Have the strategies in place to have the power sequencing and power shutdowns.

8.1 Introduction to Low Power Design

For the ASIC designs, the power optimization is especially important and overall
power analysis and understanding play important role. To have the power optimiza-
tion, the team works on the strategies to have the low-power design architecture.
Power is basically dependent on the voltage, and during this decade the technology
node has shrunk enough and hence the requirement of the core and IO voltage has
reduced.

The power dissipation for the cell is p= (1/2) *Cs * V 2 * f . The power dissipation
for any standard cell is directly proportional to the stray capacitance (Cs), applied
voltage (V), and the frequency. To optimize for the power, we should have the lower
voltage, lower capacitance, and low frequency. Practically, ASIC chips work at the
higher frequencies, and reducing frequency is not the objective! There is always
trade-off between the speed and power, and the architecture design should consider

Low-power aware designs and architecture are the real requirement during ASIC design.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_8

113

114 8 Low Power Design Considerations

the speed and frequency requirements to have the better architecture in place which
can have the desired speed and the low power.

So, the power we consider is the leakage and dynamic power mainly. The primary
source of power dissipation in CMOS is leakage current. The leakage current is
summation of the cell leakage current and is state dependent.

Pleakage =
∑

Cell Leakage

where cell leakage can be computed by using the library cell leakage, and it is state
dependent.

The dynamic power is defined as addition of the summation of the cell dynamic
power and summation of power dissipated due to wires. The following are the few
equations which describes the leakage and dynamic power.

Pdynamic =
∑

Cell dynamic power +
∑ 1

2
∗ Cl ∗ V ∗ V ∗ Tr

where the Cl is the capacitive load at pin or net, V is voltage level, and Tr is toggle
rate.

Having the low-power design architecture is useful to have the low-powermanage-
ment and to have the long battery which is the real requirement. It is expected that
the ASICs and devices should be of lightweight, small, cool, and even they should
have the long battery life.

In simple words, let me describe this in the block diagram. We can imagine
following to have the low-power aware architecture

1. Multiple power domains
2. Power sequencer and scheduling algorithms
3. Different cells such as

(a) Level shifter
(b) Isolation cells
(c) Retention cells.

The basic architecture is described in Fig. 8.1. As shown, the architecture has the
overall power management using the power sequencer/schedular and used to control
the power domain I and power domain II.

8.2 Sources of Power

Asdiscussed in the previous section, the power dissipation for the cell is p= (1/2) *Cs

* V 2 * f . The power dissipation for any standard cell is directly proportional to the
stray capacitance (Cs), applied voltage (V), and the frequency.

8.2 Sources of Power 115

Power Domain I

Power
sequencing and

Scheduling

Power Domain
II

Level Shifter,
Isolation and

Retention cells

Fig. 8.1 Low-power design architecture

Fig. 8.2 Sources of power consumption

The sources of power consumption in CMOS are described in Fig. 8.2.
Following are few of the important points to understand the power dissipation in

the CMOS

1. The power dissipation for any CMOS cell is function of the switching activity,
capacitance, voltage, and the structure of transistor. So power is described as

Power = Pswitching + Pshort-circuit + Pleakage

2. The total power for any CMOS cell is summation of the dynamic and leakage
power.

3. Dynamic power is summation of the switching power and short-circuit power.
4. The short-circuit power dissipation is due to the gate switching state, and it is

due to the short circuit between the supply voltage and ground. The following
equation describes the switching and short-circuit power

116 8 Low Power Design Considerations

Table 8.1 Percentage power saving

Design abstraction stage % Power saving

System design and architecture 70–80

Behavioral design 40–70

RTL design 25–40

Logic design 15–25

Physical design 10–15

Pswitching = α ∗ f ∗ Ceff ∗ Vdd ∗ Vdd

where α is switching activity, f is switching frequency, Ceff is effective
capacitance, and Vdd is supply voltage.

Pshort-circuit = Isc ∗ Vdd ∗ f

where Isc is short-circuit current during switching, f is switching frequency, and
Vdd is supply voltage.

5. Dynamic power can be reduced by reducing the switching activity, clock
frequency (it reduces the design performance), also by using the capacitance,
and the supply voltage. If faster slew cells are used, then it consumes the less
dynamic power and hence cell selection is important in reduction of the dynamic
power.

6. Leakage power is given by the following equation, and it is function of the supply
voltage Vdd, the switching threshold voltage Vth, and size of transistor.

Pleakage = f

(
Vdd, Vth,

W

L

)

In the above equation, theW is width of transistor and L is length of transistor.

Powers-saving opportunities at the different design phases are listed in Table 8.1.

8.3 Power Optimization During the RTL Design

As discussed earlier during the RTL design, the power can be optimized by 25–40%
using various techniques and strategies. The section discusses the low-power design
technique.

1. Modeling andpower estimation: For the low-power design and themanagement
of power for anySOC, it is essential to prepare the librarymodelswith the required
power data. It is required to develop the transistor-level models for the custom
blocks. The common practice in the SOC design at the RTL level is use of power

8.3 Power Optimization During the RTL Design 117

compiler to understand the power consumption based on the switching activity
information from theRTL simulation data. This technique is useful for estimation
of the power consumption at early stage of the design. Another important point to
be considered at the gate level is to develop the glitch-free low-power designs and
state and path dependencies support. As gate-level analysis is more accurate as
compared to the RTL-level analysis, it is essential to use the time-based analysis
based on the peak power and hot spots.

2. Clock gating: Use the clock gating technique using the clock gating cells to
minimize the power during the RTL design. Clock gating can be implemented
by identifying the synchronous load enable register banks. Clock gating can be
implemented by using the gating of clockwith the enables instead of recirculating
of the data when enable is inactive. If power compiler is used at the RTL level,
then it automatically optimizes the static, dynamic power dissipation with the
delay and area to meet the design constraints.

Clock gating stops the clock and forces the original circuit in the zone of no
transition. In the practical scenario, if we consider the functional block as

always@(posedge clk)
begin
if(enable)
data_out<=data_in;
end

The above piece of code generates the synthesis result shown in Fig. 8.3.
The above generated logic is without clock gating and has the higher-power dissi-

pation. To reduce the power consumption, the clock gating logic needs to be used
and can be designed by eliminating the multiplexers at the input, thus avoiding the
recirculation of data. This results in the area and power savings and reduces the
power consumption in the clock network. The synthesized logic using clock gating
is shown in Fig. 8.4. The timing sequence is shown in Fig. 8.5.

The use of clock gating has drawback that the logic used to implement the clock
gating technique is redundant and hence there can be issues in the testing and verifi-
cation. Another important point need to keep in mind is that it is essential to stop the

data_out
data_in

clk

enable

Register

Fig. 8.3 Design without clock gating

118 8 Low Power Design Considerations

data_out
data_in

G_clk
enable Register

Latchclk

Fig. 8.4 Design with clock gating

Fig. 8.5 Timing sequence for the clock gating

glitches and hazards on enable signal, and this is achieved by using the transparent
latch between the enable and the AND logic gate.

Clock gating can be efficiently implemented by using the power compiler from
Synopsys. Use the command set_clock_gating_signals. Figure 8.6 illustrates the
inputs and outputs used for the power compiler.

The outcome of the power compiler is the elaborated unmapped design. Power
compiler uses the inputs as source RTL code and library to optimize for the low
power.

The following are few of the key points need to be considered while implementing
the clock gating using the power compiler.

1. General clock gating can be included or excluded from the design for the hierar-
chical modules. The command use is set_clock_gating_signals. The care needs
to be taken by the designer while using the power compiler for the same. Each
design should have the single command line for both the inclusion and exclusion
of the clock gating.

2. If the design has multiple registers and few of the registers need to be excluded
from the clock gating strategy, then they should have the separate enable signal.
If same enable signal is used, then it generates the same clock gating for the
entire register bank. For example, if the data bus is defined as data_in[7:0] with
the registered inputs and if the lower nibble data_in[3:0] need be excluded from
clock gating, then it should have the different enable and data_in[7:4] should
have different enable.

8.3 Power Optimization During the RTL Design 119

Source code (RTL)

Power Compiler
elaborationLibrary

Elaborated Unmapped
design

Fig. 8.6 Power compiler inputs and outputs

3. Clock gating signals as single bit or multiple bits have added advantage as it
avoids the recirculation of the data by removing the multiplexers. But it can
consume more area and additional power due to the clock gating logic.

4. Do not use clock gating for the master slave flip-flops. Generally, it is normal
practice that clock gating logic is used at the slave flip-flop if the clock gating
conditions are met. Such design may not perform the desired operation. Use the
command set_clock_gating_exclude to exclude the master slave flip-flops.

5. While using the clock gating, it is a common practice to use the minimum
bus width. The minimum bus width can be of 5 or more. Use the command
set_clock_gating_style_minimum_bitwidth.

6. In most of the design practices at the RTL level if the procedural ‘always’ blocks
are used and if it consists of ‘case’ with the ‘default’ clause or conditional expres-
sions like ‘if-else,’ then modify the RTL by including the default condition in
every ‘if-else’ statement. Example 1 describes the modification of the procedural
block using ‘default’ as ‘else’ clause.

Example 1 RTL tweak for the power saving

120 8 Low Power Design Considerations

case(a_in)
2’b00: if (b1_in) c_in =d1_in;

2’b01: if (b2_in) c_in =d2_in;
default : c_in = e1_in;
endcase
The above Verilog RTL can be modified as
case(a_in)
2’b00: begin

if (b1_in) c_in =d1_in;
else c_in=e1_in;

end
2’b01:begin

if (b2_in) c_in =d2_in;
else c_in =e1_in;

endcase

7. If same enable is shared by the multiple register banks, then the power compiler
feature can be used to share the clock and enable signal to multiple register bank.
This is used to save the overall area. Consider Example 2 shown below, and it
has two different procedural blocks then the same clock gating logic can be used
for both of the procedural blocks.

Example 2 Use of common clock enable

always @ (posedge clk or negedge reset_n)
begin : block_1

if (~reset_n)
data_out <= 1’b0;

else if (enable)
data_out<=data_in;

end
always @ (posedge clk or negedge reset_n)
begin : block_2

if (~reset_n)
data_out _1<= 1’b0;

else if (enable)
data_out_1<=data_in_1;

end

8.3 Power Optimization During the RTL Design 121

8. Use the simple clocking strategies for the automatic clock gating insertion. If the
number of clock domains is minimum, then it gives simplified timing analysis
and clock tree synthesis. The lower down modules can have enable signals
instead of dividing the clock. Use the set-don’t_touch_network command to
avoid the compilation changes on the clock network. During the multiple step
compilation process, this avoids the changes on the clock gating logic.

9. Use the simple set and reset strategies. Complex set and reset strategies may
result in the design logic which is prone to issues at the gate-level functional
debugging. The care needs to be taken by the designer to have the proper logic
partition for synthesis while using the internal set and reset signals.

10. Clock balancing and the clock buffer signal insertion need to be used efficiently
to have efficient clock tree synthesis (CTS).CTS toolsworkby addingormoving
the buffers, resizing of cells along the clock tree network tomanage the required
skew and the insertion delay.

8.4 Switching and Leakage Power Reduction Techniques

There are several techniques used to reduce the power, and few of the commonly
used power management techniques are listed in Table 8.2.

Another few important techniques used in the power management at various
abstraction levels are listed in Table 8.3.

Table 8.2 Power management techniques

Power management technique Description

Clock gating and clock tree optimizations In this technique, the portions of the clock tree which
are not used at the instance of time are disabled

Logic restructuring Use the cone structure to minimize the power. Move
the low-switching operations back in the logic cone
and high-switching operations up in the logic cone.
This technique is used to reduce the dynamic power
at gate-level optimizations

Operand isolations This technique is effective in reducing the power
dissipation in the data path of any blocks by using
the enable signals

Logic and transistor resizing Use the downsizing to reduce the leakage current
and use upsizing to reduce the dynamic current by
improving the slew times

Pin swapping Use the swapping gate pins to reduce the power. If
the capacitance is lower. then the switching can be
fast at the gate or pin

122 8 Low Power Design Considerations

Table 8.3 Efficient power management techniques

Power management technique Description

Multi-V th Use the multithreshold libraries for the power
reduction. Use the high-switching threshold for
lesser leakage power, but it reduces the design
performance. Use the low-switching thresholds for
the higher performance, but it has higher leakage

Multiple supply voltage (MSV islands) Use the multiple supply voltages for the different
design blocks

Dynamic voltage scaling (DSV) In this technique, the selected blocks can run at
different supply voltages according to the design
requirements

Dynamic voltage and frequency scaling
(DVFS)

This is used to reduce the dynamic power. In this
method, the selected blocks of design use the
different supply voltages and frequencies on fly

Adaptive voltage and frequency scaling
(AVFS)

This can be accomplished by using analog circuits,
and in this technique based on the control loop
feedback the wide range of voltages is set
dynamically

Power gating or power shutoff (PSO) If the functional blocks are not used, then the
selected functional blocks are powered off

Splitting memories If the memories are controlled by software or the
data, then the portions of memories can be spitted
into more number of portions. This is effectively
used to save the power by shutting off the portion
of memories which are not used

8.4.1 Clock Gating and Clock Tree Optimizations

This technique is especially efficient in reducing the dynamic power. In most of the
application, the power iswasted due to unnecessary toggling of the clock signal. Even
the clock trees are the major sources for the larger dynamic power, as they have the
larger capacitive load and the switching requires the maximum rate. So if the data is
not loaded in the register frequently, then significant amount of power is wasted and
this can be saved by using clock gating technique. The clock gating is at the register
level or leaf level, and if it is done at the block level, then the entire functional block
can be disabled by disabling the clock tree. This reduces the switching and hence
reduces the dynamic power.

8.4.2 Operand Isolations

This technique is effective in reducing the dynamic power dissipation in the data path
of any blocks by using the suitable enable signals. Most of the times, the data path

8.4 Switching and Leakage Power Reduction Techniques 123

elements are sampled periodically and hence this sampling can be controlled by using
the enable inputs. During inactive state of enable signal, the data path inputs can be
forced to the constant value to reduce the dynamic power due to lesser switching.

8.4.3 Multiple Vth

This technique is effective while optimizing for area, power and speed by using
the different threshold voltage. Most of the libraries have the different switching
threshold voltages. The efficient EDA tool used for synthesis can be able to use the
different library cells of different switching threshold voltages for meeting the area
and speed constraints with the lowest power dissipation. Always there is trade-off
between the power and speed.

8.4.4 Multiple Supply Voltages (MSV)

In this technique, the different functional blocks operate at the different voltage levels.
As the voltage level reduces , the active power is reduced as it is function of the square
of the supply voltage. But it can degrade the design performance. While using this
technique, it is required to use the level shifters while communicating between the
different power domains. If level shifters are not used, then the sampling of the valid
signals is an issue.

8.4.5 Dynamic Voltage and Frequency Scaling (DVSF)

Dynamic voltage and frequency scaling is efficient technique to reduce the active
power consumption. As discussed in the earlier section, the power dissipation is
proportional to the voltage square so lowering the voltage has effect on the power
consumption. In this type of technique, depending on the performance and power
requirements, the frequency and voltage can be scaled down on the fly and hence it
can reduce the power dissipation. This technique is especially effective to optimize
the static and dynamic power due to optimization of the frequency and voltage levels.

8.4.6 Power Gating (Power Shut Off)

Power gating or power shutoff (PSO) is one of the effective techniques, and in this
technique the design modules which are not used can be switched off using switches.
This is one of the powerful techniques used to reduce the leakage power. Inmost of the

124 8 Low Power Design Considerations

industrial applications, the leakage power can be reduced bymore than 90% by using
the power gating switches. To design this technique, it needs the clear understanding
of the power down sequence and use of the isolation cells. It is essential to use the
isolation logic with the state retention elements and even level shifters while using
the power gating.

8.4.7 Isolation Logic

This is used at the output of power down block to prevent unpowered signals, floating
signals from power down block. In the simulation, these signals can be denoted by
‘X’. Isolation cells are used between the two power domains and connected between
the power off domain and the power on domain. The reason for isolation cell in the
two power domain is to isolate the output of blocks before the power switch off state
and needs to remain isolated until the power is switched on. In few design scenarios,
isolation cells can be used to block levels to prevent the connection to power down
logic.

8.4.8 State Retention

During the power off mode, most of the time it is essential to retain the state of
registers. The state of the registers is useful during the power recovery. In most of
the low-power designs, the state retention power gating flip-flops are used and these
flip-flops are called as SRPG. Most of the EDA tool cell libraries are having the
SRPG cells.

8.5 Low-Power Design Architecture and Use of UPF

Consider the low-power design architecture which is shown in Fig. 8.7 which we
have already discussed at the beginning of the chapter. What we need to have is the
understanding of the UPF and the different low-power design strategies which can
be useful during the architecture and micro-architecture design.

Unified Power Format (UPF) is the standard used to design electronic systems
by considering the power as the feature. The standard is used for low-power ASIC
designs. The reasons for using UPF are

1. There is no anymethod which can support accurate management and distribution
of low power at the HDL-level abstraction.

2. Vendor-specific power formats are inconsistent and are prone to bugs due to
inconsistent specifications.

8.5 Low-Power Design Architecture and Use of UPF 125

Power Domain I

Power
sequencing and

Scheduling

Power Domain
II

Level Shifter,
Isolation and

Retention cells

Fig. 8.7 Low-power architecture

3. UPF provides the following and can be used consistently in low-power ASIC
designs

(a) Power distribution architecture
i. Define the power domains
ii. Define power switches
iii. Define power rails

(b) Power strategy
i. Creation of power state tables

(c) Set and map
i. Isolation
ii. Retention
iii. Level shifter
iv. Switches.

UPF is IEEE 1801 standard and can be used throughout the design flow for power
aware design intent. Figure 8.8 describes use of UPF at various stages.

1. Isolation cells
As discussed already, the isolation cells are used at the output of powered down
block. The isolation cell can be set by using the UPF command.

2. Retention cells
As discussed already in the above section, the retention cells are used to retain
the state of key registers during power off state.

3. Level shifters
Level shifters are used to translate from one voltage level to another voltage level.
The translation can be from low to high voltage level or high to low voltage level.
Set and map level shifter can be achieved by using the UPF commands.
The key points to consider for the same are

126 8 Low Power Design Considerations

Fig. 8.8 Use of UPF during various design stages

(a) Pick the correct power domain
(b) Select input or output ports or both
(c) Use up shift or down shift rule
(d) Define the location.

4. Power sequencing and scheduling
Specific sequence is generally followed for the power down. The sequence
includes isolation, state retention, and the power shutoff. For the power-up cycle,
the opposite sequence needs to be followed. During power-up cycle, it is recom-
mended to have the specific reset sequence. Following timing sequence gives
information about the power-up/down sequence (Fig. 8.9).

For themultiple clock domains with the different power sequence and themultiple
clock gatingwith few commonpower control signal, it requires the higher verification
efforts to ensure the correct sequencing for the power on and power off.

8.6 Chapter Summary 127

Isolation Signal Enabled

SPRG Retention State

POWER OFF state

Remove clocks on SRPG flops

Fig. 8.9 Power sequence

8.6 Chapter Summary

Following are the key highlights to summarize this chapter

1. The power dissipation can be reduced by optimizing for the leakage and dynamic
power.

2. Dynamic power can be reduced by reducing the switching activity.
3. The clock gating strategies are useful to reduce the dynamic power.
4. Operand isolation is effective in reducing the dynamic power dissipation in the

data path.
5. Dynamic voltage and frequency scaling efficient technique to reduce the active

power consumption.
6. Level shifters are used to translate from one voltage level to another voltage level.

The translation can be from low to high voltage level or high to low voltage level.
7. The retention cells are used to retain the state of key registers during power off

state.
8. Unified Power Format (UPF) is the standard used to design electronic systems by

considering the power as the feature. The standard is used for low-power ASIC
designs.

9. Power gating or power shutoff (PSO) is one of the effective techniques, and in this
technique the designmodules which are not used are switched off using switches.
This is one of the powerful techniques used to reduce the leakage power.

Chapter 9
Architecture and Micro-architecture
Design

The architecture for the ASIC is complex, and it requires the significant amount of
experience to finalize and to document the architecture and micro-architecture. The
architecture and micro-architecture design are discussed in this chapter and useful
during the ASIC design phase.

The important strategies can be the following to develop the architecture of the
chip

1. Understanding g of the functionality and block-level representation
2. Single or multiple clocks
3. Power requirements
4. Area and speed requirements
5. Parallelism
6. Pipelining
7. External interfaces
8. Technology node.

9.1 Architecture Design

For any kind of product development based on the ASIC, what we need to understand
is the functional specification first and then we need to play around the

1. External interfaces
2. Electrical characteristics
3. Speed, power, and area requirements
4. Mechanical assembly or packaging
5. Design and verification strategies
6. Testing strategies.

The architecture and micro-architecture document plays important role during the design cycle.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_9

129

130 9 Architecture and Micro-architecture Design

With reference to above as per as the functionality of the design is concerned and
the requirements of the area, speed, and power, the chapter discusses the architecture
andmicro-architecture design concepts which can be useful for the complex designs.
Consider the video encoderH.264 encoder used to process theHD size image of 1920
× 1080P. Initially , what we will work on the functional blocks of the design, and
then we will use the experience to finalize the architecture and micro-architecture
for the design.

The important functional blocks are shown in Fig. 9.1.

1. Frame buffers
2. Prediction (Intra or Inter)
3. Storage buffers
4. Quantization and transform (Q&T)
5. Inverse quantization and transform (Q&T)
6. Deblocking filter (DB filter).

The architect team uses the following to design and finalize the architecture of
ASIC!

(a) Design functionality and understanding of the design application
(b) Where the design will be used and the constraints associated with it
(c) Optimization constraints such as speed, power, and area
(d) Foundry laid rules that is DRC

Input
Frame
Buffers

Output
Frame
Buffers

PredicƟon

DB Filter

Storage

Storage

Q&T

Inverse
Q&T

Top Level ConfiguraƟon Management

Clock Management and Timing Control

Fig. 9.1 H.264 block-level representation

9.1 Architecture Design 131

(e) Requirement of low-power architecture and low-power sequencing
(f) The multiple clock domain designs and strategies to have the different clock

groups
(g) The IP requirement during various phases may be hard or soft IPs
(h) Memories and macros requirements
(i) The overall data rate, timing, and clocking requirements for the design
(j) Overall strategies for the hardware and software partitioning of the ASIC

design
(k) The testing setup and EDA tools required
(l) The electrical characteristics and interface timing requirements.

All above points are useful to design the architecture and micro-architecture
for the chip. By using the functional understanding, the multiple architectures are
designed for the ASIC and the best suitable architecture for the design is finalized.
The strategies for finalization of the architecture are always dependent on the

1. How best the parallelism and concurrency can be incorporated in the design to
have better performance.

2. How the architecture can yield into the better configuration management.
3. How the architecture can allow the design teams to have better initial floor plan

to avoid the congestion in the design.
4. How the architecture can give better visibility of the constraints requirement.

9.2 Micro-architecture Design

After the architecture for an ASIC is finalized, the blocks from the architecture are
represented in the small blocks or sub-blocks, and it is called as micro-architecture of
the design the micro-architecture should be finalized by considering the following!

1. The sub-block functionality and interface strategies
2. The hierarchy of the design
3. The flatten verses hierarchical design and initial gate count estimations
4. Various techniques which can be useful to finalize the block level to constraints
5. Low-power strategies at the block and top level
6. Multiple clock domain interface handling.

9.3 Use of Document During Various Design Phases

The architecture and micro-architecture document used during various phases of the
design and these phases are

1. RTL design
2. Synthesis
3. Physical design.

132 9 Architecture and Micro-architecture Design

During the RTL design phase, the document is useful to describe the functionality
of various blocks usingVerilog design. Themodular design approach is used due\ring
the design, and finally top-level integration is carried out.

During the RTL verification, the verification planning and the verification
architecture are used, and it is out of scope as per as discussion is concerned.

During the block and top-level synthesis also with the Verilog source files
if the architectures know to the synthesis team them\n during the performance
improvement, it can be used as a better tool.

Even the better architecture and micro-architecture can be used to have the better
strategies for the initial floor plan and placement of the functional blocks.

9.4 Design Partitioning

The architecture and micro-architecture document should also give the information
about the design partitioning as per as functionality of the design is concern. The
following should be documented to have the better outcome of the ASIC design!

1. Hardware and Software Partitioning: The functional blocks need to be
designed using the Verilog and the blocks need to be designed using the soft-
ware should be documented and are one of the factors to establish the better
communication and synchronization for the ASIC or SOC blocks.

2. Partitioning at the Logic Level: To have the better performance, the partitioning
strategies should be documented at the logic level. For example, complex proces-
sors functional blocks and interfaces can be partitioned at the top level to have
the modular design approach.

3. Multiple Clock Domain Designs: Partitioning of the design by combining the
functionality depending on the clock groups can result into the better synthesis
and in turn better floor plan.

4. Partitioning forLow-PowerAwareArchitectures: Partitioning of the design by
considering the power requirements can result into the better power optimizations
during the design.

5. Partitioning Analog and Digital Domains: For the ASIC designs which uses
the analog and digital blocks, the better strategy is to partition the design into
the analog and digital domain. Have the full-custom design flow for the analog
blocks and the semi-custom ASIC flow for the digital design.

9.5 Multiple Clock Domains and Clock Grouping

Let us discuss the design which needs to have the multiple clocks. The processor and
associated logic works on the clk1. Memory controller works on clk2, and the DSP
processor with the H.264 encoder works on clk3. The design has three clocks, and
Table 9.1 gives information about the clock frequency (Fig. 9.2).

9.5 Multiple Clock Domains and Clock Grouping 133

Table 9.1 Clock frequencies at various clock domains

Clock domain control Frequency in MHz Description

clk1 500 The clock domain one operating at frequency of
500 MHz

clk2 666.66 The clock domain two operating at frequency of
666.66 MHz

clk3 250 The clock domain three operating at frequency of
250 MHz

Fig. 9.2 Multiple clock domain design architecture

For such kind of designs, the partitioning by considering various clock domains
can play especially important role. It will be useful during the RTL design phase
while deploying the synchronizers in the control and data path.

9.6 Architecture Tweaking and Performance Improvement

Architecture and micro-architecture tweaks can incur significant amount of time and
budget in the ASIC design cycle. Even the manufacturing processes will be delayed
if major architecture and micro-architecture changes are required.

Let us try to understand the scenarios during the design which may require major
tweaks in the architecture and in turn all the design phases.

1. Specification Additions: If client suggests incorporating the additional func-
tionality in the design, then it becomes very time consuming to tweak the present
architecture. It adds the significant amount of the time and budget and elongates
the overall chip development cycle. Reason may be the additional logic required

134 9 Architecture and Micro-architecture Design

for debugging and for the test of the ASIC or need to have the low-power aware
design.

2. The Architecture is Having Parallelism: If the architecture is having the more
parallel blocks which executes concurrently and during synthesis if the team
faces issues in the area optimization, then the architecture andmicro-architecture
tweaks can be carried out. But prior to this, it is always recommended to work
on the RTL tweaks and tool-based i\optimization techniques.

3. Performance is Not Met During the Synthesis: Initially, it is recommended to
carry out the RTL tweaks, and if design doesn’t meet the performance, then carry
out the tweaks in the architecture.

9.7 Strategies for the Micro-architecture Design
of Processor

Let us consider the 32-bit processor which has the following specifications

1. It should perform the arithmetic operations such as addition, subtraction,
multiplication, division, and modulus on signed, unsigned, and floating-point
numbers.

2. It should perform the logical operations on 32-bit binary numbers.
3. It should perform the data transfer and branching operations.
4. It should perform the shifting and rotate operations.
5. The external interfaces can be

(a) IO interfaces
(b) Serial IO
(c) High-speed interfaces

6. It should have the internal memory storage of 64 KB.
7. The processor should have the interrupt controller.
8. The processor should have two clock domains and should use clk1 and clk2,

respectively.

Consider that these specifications are extracted from the requirements, and let us
try to use these to have better architecture and micro-architecture.

1. Multiple Clock Domain Groups:
Clock domain 1: It is controlled by the clk1 and the functional blocks of this
clock domain are

(a) ALU
(b) Internal memory
(c) Interrupt controller
(d) Pointers and counters
(e) Serial IO
(f) IO interfaces.

9.7 Strategies for the Micro-architecture Design of Processor 135

In the architecture clock, domain 1 blocks are indicated by the yellow color.
Clock domain 2: It is controlled by the clk2, and the functional blocks of this
clock domain are

(a) Floating-point unit
(b) High-speed interfaces.

In the architecture clock, domain 2 blocks are indicated by the white color.
2. Processor Engine

As stated in the specification extraction document, the processor core performs
various operations on the signed andunsignednumber andfloating-point numbers
so the better strategy is to have the dedicated block for the general-purpose
operations and floating-point operations (Fig. 9.3).
ALU: performs the operations on the signed and unsigned numbers.
Floating-Point Engine: used to perform the operations on the floating-point
numbers.
Then let us try to have the dedicated memory block of 1 MB may be have
partitioning according to the address ranges so that various functional units can
perform the read and write operations.

3. Memories: To store the internal data, the processor needs to have the internal
memory and can be shared between the general-purpose ALU and the floating-
point engine. If we have the multiple clock domain design, then better way is to
have the separate memory for the general-purpose processor and floating-point
engine.
With reference to the specification, the 64 KBmemory is divided into two blocks
of 16 KB and 48 KB, respectively (Fig. 9.4).

Fig. 9.3 Processing engine

ALU

Floating
Point

Engine

Fig. 9.4 Memories

Internal Memory

48KByte

16KByte

136 9 Architecture and Micro-architecture Design

Fig. 9.5 Counters and
pointers

Pointers and Counters

PC

SP

32-bit
Counter

and
Ɵmer

4. High-Speed Interfaces: To exchange the data from the external memory and
IO after performing the floating-point operations, the architecture need to have
the high-speed interfaces. These high-speed interfaces are designed to have low
latency and minimum interconnect delays.

5. Pointers and Counters: During the general-purpose processing of the data, the
result may need to be stored in the reserved area of memory so the design may
need the stack pointer and to fetch the instruction and the data from the external
memory the design needs the program counter. The stack and program counter
are 16-bit for the architecture (Fig. 9.5).
The 32-bit counter and timer are used as dedicated timer and counter during the
counting applications.

6. IO and Communication Blocks: To communicate with the external devices
such as serial and parallel, the processor architecture should have the dedicated
blocks. These blocks are

• IO Interfaces: For the 32-bit data transfer dedicated high-speed IOs to
exchange the 32-bit of the data between the IO devices and processor

• Serial IO: The serial devices can communicate with the general-purpose
processors using the serial IOs.

7. Interrupt Controller: The architecture provides the dedicated block to process
the edge and level-sensitive interrupts. The interrupt controller can halt the current
execution for the valid interrupt.

8. Clock Management and Timing Control: The clock management and timing
control block to distribute the clock with uniform clock skew.

9. Configuration Management: The configuration and test management to carry
out the initial test and tomanage interaction between the processor and the system
(Fig. 9.6).

The document should consist of the information regarding the following

1. Initial floor plan and initial area estimation
2. Information about the timing and power
3. Information about the interfaces between various functional blocks
4. Information about the design partitioning
5. EDA tool requirements

9.7 Strategies for the Micro-architecture Design of Processor 137

Interrupt Controller

ALU
FloaƟng Point
Engine

IO Interface

High Speed
Interfaces

Serial
IO

Processor ConfiguraƟon Management

Clock Management and Timing Control

Internal Memory

48KByte

16KByte

Pointers and
Counters

PC

SP

32-bit
Counter
and
Ɵmer

Fig. 9.6 Sub-block-level representation for processor

6. IP and memory requirements
7. Overall clocking strategies
8. Reset policies
9. Overall block, top, and chip-level timing.

For more information about the architecture and micro-architecture, refer case
studies documented in Chaps. 17, 19 and 20.

138 9 Architecture and Micro-architecture Design

9.8 Chapter Summary

Following are the important points to conclude the chapter.

1. Architecture is block-level representation of the design.
2. Micro-architecture is sub-block-level representation of the design.
3. It is recommended to have the better strategies for the design partitioning.
4. Partition the design during the architecture design for multiple clock and power

domains.
5. The better architecture andmicro-architecture document should give information

about the interface and timing with the interdependability of the blocks.

Chapter 10
Design Constraints and SDC Commands

As discussed during Chaps. 5–9, the important ASIC design constraints are classified
into two categories, and mainly they are

1. Optimization constraints
2. Design rule constraints (DRC).

The optimization constraints are speed and area as per as the ASIC logic design
is concern. During the physical design, we need to optimize the design for the area,
speed, and power. The better power planning depending on the desired technology
node and the strategies is always helpful to get the layout of the chip.

The DRC are the foundry laid rules and mainly the transition, fanout and the
capacitance.

The constraints can be used to optimize the design during various synthesis phases
during the logical and physical synthesis.

These constraints are at the block, top, and chip level of the design. Consider the
architecture of the processor as shown in the Figure and the block-level constraints
can be specified for various functional blocks which are ALU, floating-point engine,
high-speed interfaces, etc. The top-level constraints will be used during the synthesis,
and they are for the integration of all the functional blocks.

If the block-level constraints are met, it doesn’t mean that the design will meet
the top-level constraints. The chip-level constraints for the clean layout need to be
met during the physical design (Fig. 10.1).

For the synthesis of the processor, following can be the better strategies

1. Perform the synthesis for the different clock groups.
2. Use the bottom-up synthesis and extract the block-level constraints.
3. Optimize the design during block-level synthesis to meet the area and speed.
4. Specify the top-level constraints.

Design optimization constraints are speed, area, and power.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_10

139

140 10 Design Constraints and SDC Commands

IO
Interface

Serial
IO

ALU

Internal
Memory

Floa ng
Point

Engine

Pointers
and

Counters

Ports
and
Interface
s

Interrupt
Controll

er

Processor Configura on

Clock Management and Timing Control

Fig. 10.1 Processor top-level architecture

5. Perform the top-level synthesis and optimize the design to meet the top-level
constraints.

6. Use the strategies to tweak the RTL, architecture if the constraints are not met.

10.1 Important Design Concepts

10.1.1 Clock Tree

The clock tree synthesis is carried out during the physical design flow, and during
the logic design flow we do not have the information about the clock distribution.
That is, we will try to use the Synopsys DC setup with the statistical data available
to specify the clock and clock latency.

10.1.2 Reset Tree

The design which has themultiple resets for the initialization of the functional blocks
need to be synchronized with the main reset that is master reset. The reset trees can

10.1 Important Design Concepts 141

be useful to avoid the metastable output if the reset is generated during the active
edge of the clock.

The important parameters to consider are the

1. Reset recovery time.
2. Reset removal time.

10.1.3 Clock and Reset Strategies

The following strategies can be helpful during the logic design as per as reset and
clocks are concerned.

1. For multiple clock domains, use the synchronizers in the data and control path
which is already discussed in Chap. 7.

2. Use the statistical data to introduce the clock latency and specify the setup and
hold uncertainty during logic synthesis.

3. Hand instantiate the clocks during the logic design.
4. Use the reset synchronizers to synchronize the reset with the master reset.

10.1.4 What Impacts on Design Performance?

The ASIC design should meet the optimization constraints for speed and area. The
power constraints andDRCwewill use are during the physical design. The following
are important points need to address during the synthesis

1. Block-level constraints: For the complex ASIC designs if we consider the
multiple functional blocks or Ips, then the block-level constraints should be
specified. The block-level constraints for the functional block should meet. For
example, the processor logic operates at the 250 MHz operating frequency but
the overall chip works at the 500 MHz. In such scenario, the overall uncertainty
for the setup and hold is different as compared to top-level constraints. So, the
block-level Tcl script should be used during the block-level synthesis.

2. Top-level constraints: For the bottom-up synthesis after performing the synthesis
of all the functional block, the top-level integration is carried out. The top-level
constraints need to be specified for the specific clock groups and mainly in the
Tcl script, the following commands should be used

(a) Clock latency information
(b) Input delay
(c) Output delay
(d) Setup uncertainty
(e) Hold uncertainty.

If the block-level constraints are met, then it is not guaranteed that the top-level
constraints will meet. Few of the reasons may be

142 10 Design Constraints and SDC Commands

1. The additional delays incurred if the design partitioning is not at sequential
boundaries.

2. The data arrival is fast, and the design has hold violations.
3. The data arrival is slow, and the design has setup violations.
4. If during the synthesis, there are timing exceptions due to multicycle and false

paths.
5. The data integrity due to poor synchronization strategy.
6. If the design has hierarchy and the DC not able to optimize the glue logic. In

such scenarios, the design needs to be flattened to improve the optimization.

10.2 How to Interpret the Constraints

The important constraints which need to be specified for the block and top-level
synthesis with Verilog files are area, speed, and power. Let us rule out the power as
power optimization is not carried out using DC. As a designer and synthesis team
member, our goal is to have the functional understanding of the design and overall
area and speed requirements for the design.

10.2.1 Area Constraints

During the logic synthesis, the area is due to the logic and macros used. The standard
cell information is available in the library, and the specific macros are required to
have the lower-level abstraction of the design. The overall area optimization can be
carried out during the

1. RTL design: Using the few concepts like resource sharing, resource allocation,
eliminating dead zones, using parenthesis and groping.

2. Synthesis: By using tool specified directives and using the area optimization
commands, the area can be optimized.

10.2.2 Speed Constraints

Speed is especially important factor as it decided the overall performance of the
design. The speed constraints for the design need to be worked out depending on
the statistical data available in the library for the specific technology node, and these
constraints should be met. As the actual placement and routing information is not
available during the logic synthesis, the goal is to have close look to eliminate the
setup violations for the block- and top-level design. The synthesis and STA team
need to specify the following

10.2 How to Interpret the Constraints 143

1. Clocks
2. Clock latency
3. Setup and hold uncertainty
4. Input and output max and min delays
5. Specify the multicycle paths
6. Specify the false paths.

10.2.3 Power Constraints

The power is another constraint, and during the power planning we specify the
constraints as leakage and dynamic power. To have the low-power aware architectures
and designs, we will use the Unified Power Format (UPF) at various design stages.

Following can be few of the strategies to optimize for the power

1. Architecture design: Have the low-power architecture design and have the
strategies for power sequencing and power shutdowns.

2. Use the low-power cells: Use the low-power cells during design but the designer
needs to have better understanding of the cell characterization as use of these
cells has significant impact on the speed of the design.

3. RTL design: During the RTL design, use the clock gating cells to reduce the
dynamic power.

10.3 Issues in the Design

Following are the important challenges during the ASIC synthesis

1. Trimming of the logic
2. Unconnected ports and nets
3. The block-level speed constraints met but at the top-level design fails
4. Design has the missing block level connectivity although the RTL verification is

successful.

10.4 Important SDC Commands Used During Synthesis

This section discusses the important DC commands used during the synthesis and
useful to specify the constraints. Refer Chaps. 11, 12, and 13 to understand the
synthesis and optimization with the design scenarios.

144 10 Design Constraints and SDC Commands

10.4.1 Synopsys DC Commands

Few of the SDC command used during the ASIC synthesis are documented in this
section.

1. Reading the design

read –format <format_type> <filename>

The above command is used to read the design.

For example to read the processor top use the following
SDC command

read-format verilog processor.v

2. Analyze the design

analyze –format <format_type> <list of file names>

Used to analyze the design. It is used to report the syntax errors and to perform
the design translation before having the generic logic. The generic logic is part of
the synopsys generic technology-independent library. The components are named as
GTECH. This logic is unmapped representation of the Boolean functions.

The command used to analyze the processor,v file is

analyze —format verilog processor.v

3. Elaborate the design

elaborate –format <list of module names>

Used to elaborate the design and can be used to specify the different architectures
during elaboration for the same analyzed design.

The command used to elaborate design is

elaborate —library work processor

It is essential to understand about the difference between the read and analyze,
elaborate command. The following are key highlights:

10.4 Important SDC Commands Used During Synthesis 145

1. The analyze and elaborate are used to pass required parameters while elaborating
the design.

2. The read is used while entering for the pre-compiled designs or netlists in DC.
3. Using analyze and elaborate commands, the different architectures can be

specified during elaboration for the same analyzed design.
4. The read command doesn’t allow the use of the different architectures.

10.4.2 Checking of the Design

After the design has been read using the DC, the check_design is used and used to
check the design problems like shorts, opens,multiple connections, and instantiations
and the no connections.

check_design

The command used to check the errors in the
design
check_design

10.4.3 Clock Definitions

The clock needs to be specified using the command create_clock, and this is used
as reference clock during the timing analysis. The following example describes the
clock definition using the create_clock command.

create_clock –name <clock_name> -period <clock_period>
<clock_pin_name>

The command is used create the clock for the design which is used as reference
clock during timing analysis. If design doesn’t have clock, then it will be treated as
virtual clock.

The 500MHz clock with 50% duty cycle is created using
create_clock and specified as

create_clock —name clock -period 2 processor_clock

146 10 Design Constraints and SDC Commands

Clock Having Variable Duty Cycle
If designer wish is to use the clock with variable duty cycle having rising edge at
0.5 ns and clock period of 2 ns, then the create_clock command can be modified as

create_clock –name clock - period 2 –waveform {0.5,2} –name
processor_clock

Virtual Clock
If the design doesn’t have the clock pin, then the virtual clock is created using
following commands.

This command generates virtual clock of frequency 500 MHz with 50% duty
cycle.

create_clock –name clock -period 2

This command generates virtual clock of frequency 500 MHz with variable duty
cycle having rising edge at 0.5 ns and falling edge at 2 ns.

create_clock –name clock -period 5 –waveform {0.5,2}

10.4.4 Skew Definition

As discussed in Chaps. 5 and 6, the skew is the difference between the arrivals of
the clock signal. If clock at the source flip-flop is delayed with reference to the
destination flip-flop, then the skew is called as negative clock skew and useful for
the hold. If clock at the destination flip-flop is delayed as compared to the source
flip-flop, then the skew is called as positive clock skew and useful for the setup. The
reason being as clock at the destination flip-flop is delayed, and the data can arrive
late by the margin of the skew.

The design compiler will not be able to synthesize the clock tree, and so to
overcome the problem the clock skew is used to specify the delay!

The following command used by design compiler to specify clock skew for the
design

set_clock_skew –rise_delay <rising_clock_skew> -fall_delay
<falling_clock_skew> <clock_name>

This command used to specify the clock skew for the
design and described as:

set_clock_skew —rise_delay 2 —fall_delay 1
master_clock

10.4 Important SDC Commands Used During Synthesis 147

10.4.5 Defining Input and Output Delay

The input and output delay can be specified by using set_input_delay and
set_output_delay commands, respectively. The command used to specify the input
and output delay is specified below.

set_input_delay –clock <clock_name> <input_delay> <input_port>

Used to define the input delay.

To define 1ns delay with reference to clock, the
command can be used as

set_input_delay —clock master_clock 1 data_in

set_output_delay –clock <clock_name> <output_delay> <output_port>

Used to define the output delay.

To define 1ns delay with reference to clock To define
1ns delay with reference to clock, the command can be

used as
set_output_delay —clock master_clock 1 data_out

10.4.6 Specifying the Minimum (min) and Maximum (max)
Delay

The input and output delays can be specified as min or max depending on the design
needs.

Maximum Input Delay

set_input_delay –clock <clock_name> -max <delay> <input_port>

Used to define the max input delay.

148 10 Design Constraints and SDC Commands

To define 2ns delay with reference to clock, the
command can be used as

set_input_delay —clock master_clock —max 1 data_in

Minimum Input Delay

set_input_delay –clock <clock_name> -min <delay> <input_port>

Used to define the minimum delay.

To define 1ns delay with reference to clock, the
command can be used as

set_input_delay —clock master_clock —min 1 data_in

set_output_delay –clock <clock_name> -max <delay> <output_port>

Used to define the maximum output delay.

To define 2ns delay with reference to clock, the
command can be used as

set_output_delay —clock master_clock —max 2
data_out

Minimum Output Delay

set_output_delay –clock <clock_name> -min <delay> <output_port>

Used to define the minimum output delay.

To define 1ns delay with reference to clock, the
command can be used as

set_output_delay —clock master_clock —min 1
data_out

10.4 Important SDC Commands Used During Synthesis 149

10.4.7 Design Synthesis

The compile command is used to perform the design synthesis. As discussed in
previous section, we need to have the design constraints, library, and Verilog files as
inputs to the synthesis tool. The design synthesis can be performed using the different
efforts levels like low, medium, and high.

The compile command is specified as

compile –map_effort <map_effort_level>

compile —map_effort medium

The command for the medium effort level can be.

10.4.8 Save the Design

The write command is used to save the design. The designer can save the synthesis
output in the Verilog (.v) or database (.ddc) format. The command can be specified
as shown:

write –format <format_type> -output <file_name>

The command used to save the netlist in Verilog format
is specified as :
write —format verilog -output processor_netlist.v

10.5 Constraint Validation

The important commands used to validate the design are listed in Table 10.1.

150 10 Design Constraints and SDC Commands

Table 10.1 Constraint validation

Command Description

check_design Used to check for the design consistency and reports the unconnected nets, ports,
etc.

check_timing Used to verify the timing

10.6 Commands for the DRC, Power, and Optimization

Important commands used to specify design rules, power, and optimization
constraints are listed in Table 10.2.

Table 10.2 DRC, power, and optimization definition

Command Type Description

set_max_transition DRC Used to define the largest transition
time

set_max_fanout DRC Used to set the largest fanout for the
design

set_max_capacitance DRC Used to set the maximum capacitance
allowed for the design

set_min_capacitance DRC Used to set the minimum capacitance
allowed for the design

set_operating_conditions Optimization constraints Used to set the PVT conditions as it
affects on timing

set_load Optimization constraints Used to model load on output port

set_clock_uncertainty Optimization constraints Used to define the estimated network
skew

set_clock_latency Optimization constraints Used to define the estimated source
and network delays

set_clock_transition Optimization constraints Used to define the estimated input skew

set_max_dynamic_power Power constraints Used to set the maximum dynamic
power

set_max_leakage_power Power constraints Used to set the maximum leakage
power

set_max_total_power Power constraints Used to set the maximum total power

set_dont_touch Optimization constraints It is used to prevent the optimization of
mapped gates

10.7 Chapter Summary 151

10.7 Chapter Summary

Following are the important points to conclude this chapter:

1. The design constraints are optimization and design rule constraints.
2. The synthesis is the process to get the lower-level design abstraction from the

higher level.
3. Synthesis tool uses the Verilog files, library, and the constraints as inputs.
4. The output from the synthesis tool is gate-level netlist.
5. The constraints for the block-level and top-level design should be documented

in the separate Tcl file.
6. The Synopsys DC does not optimize for the power.
7. During the logic synthesis, the goal is to optimize the design for the area and

speed.

Chapter 11
Design Synthesis and Optimization Using
RTL Tweaks

The synthesis is the process to get the lower level of design abstraction. If we have
the design at switch level or device level, then it is lowest level of abstraction of
the design. We specify the functionality of the design using the Verilog, and the
design needs to be mapped and routed during the physical design flow. For such
requirements, the design goes through various design phases using the sophisticated
design tools.

The synthesis is performed at various levels

1. Logic Synthesis: RTL design translation into the gate-level netlist. This uses the
Verilog files, library and the constraints.

2. Physical Synthesis: The gate-level netlist generated from the logic synthesis is
translated to have the layout that is at the physical level. The constraints used
during the physical design are the top-, chip-level optimization constraints. The
flow uses the design rules which are technology specific.

11.1 ASIC Synthesis

The process of getting the lower level of abstraction from the RTL design is called
as logic synthesis. The output from the synthesis tool is the gate-level netlist. The
EDA tool uses the Verilog files, design constraints library as an input to generate the
gate level netlist as an output.

The ASIC synthesis tool uses the inputs as

• Verilog files
• Library
• Constraints.

The synthesis tool output is

For better design outcome the design synthesis with optimization goals need to be carried out!.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_11

153

154 11 Design Synthesis and Optimization Using RTL Tweaks

• Gate-level netlistswhich can be stored in theVerilog (.v) or database (.ddc) format.

The popular synthesis tools in the industry are

• Synopsys Design Compiler which is popular as DC.
• Cadence RTL Compiler which is popular as RTL compiler.
• Role of Synthesis Tool: The synthesis tool uses the Verilog files, constraints, and

the libraries to get lower level of abstraction for design during logic synthesis.
That is it is used to get the gate-level netlist. Synthesis tool tries to meet the block
and top-level constraints by calculating the cost of various implementations.

• Gate-Level Netlist: The gate-level netlist is the structural description using the
standard cells.

• Gate-Level Verification: The gate-level netlist is verified for the functional
correctness of the design, and this is called as gate-level verification.

11.2 Synthesis Guidelines

To have the better performance, use the following guidelines during the ASIC and
FPGA synthesis.

1. Use of the Naming Convention: Use the naming conventions for all the input
and output ports. Use the naming convention specified in Table 11.1.

2. Partitioning: Partition the design at the sequential boundaries for better timing
and performance. For example, use the registered outputs and inputs.

3. RTL-Level Strategies: Few of the strategies useful during the RTL design

(a) Within the always procedural block use the blocking assignments (=) to infer
the combinational or glue logic and the non-blocking assignments (<=) to
infer the sequential logic.

(b) Do not mix blocking and non-blocking assignments.
(c) Avoid latches by using default in the case construct.
(d) Use the else clause to infer the unintentional latches while using the if-else

construct.
(e) To have complete sensitivity list, use the always@*.

Table 11.1 Naming convention

Name of signal or port Naming convention description

Master clock It can be named as master_clk

Inputs Use the inputs as a_in, b_in, data_in

Outputs Use the outputs as y_out, q_out, data_out

Active low asynchronous reset Use reset_n

Active low synchronous reset Use reset_sync_n

Bidirectional signals Use data_io

11.2 Synthesis Guidelines 155

4. Avoid Oscillations: Avoid the combinational looping in the design as they have
oscillatory behavior.

5. FSM-Based Designs: Try to optimize the FSM for the better timing and perfor-
mance using the separate always procedural block for the state register, next state,
and output logic. Use the data path and control path as separate module for clean
timing and glitch-free design. For more details refer Sect. 11.3.

6. Avoid Hierarchy in the Combinational Design: For better synthesis optimiza-
tion, avoid hierarchy in the combinational design.

11.3 FSM Design and Synthesis

Consider the input string as continuous data having combination
100010100101010011-----. Now for the overlapping sequence of the 101, the
Mealy machine needs three states. The output for the non-overlapping sequence is
given by 000000100001010000---. The state machine is shown in Fig. 11.1.

Fig. 11.1 Mealy state machine for overlapping sequence

156 11 Design Synthesis and Optimization Using RTL Tweaks

For the state machine, the description using the Verilog constructs is described in
Example 1.

Example 1 Description using Verilog for overlapping Mealy machine

reg [1:0] present_state, next_state;
//state register logic
always @(posedge clk or negedge reset_n)
begin

 if (~reset_n)
present_state<= s0;
else
present_state<= next_state;

end

// next_state_logic
always@*
begin
case (present_state)

s0 : if (data_in)
next_state = s1;

else
next_state = s0;

///

module mealy_machine(input clk, reset_n, data_in, output reg
data_out);
parameter s0=2'b00;
parameter s1=2'b01;
parameter s2=2'b10;

11.3 FSM Design and Synthesis 157

s1 : if (~data_in)
next_state = s2;

else
next_state = s1;

s2 : if (data_in)
next_state = s1;

else
next_state = s0;
default : next_state=s0;
endcase
end
//output logic
always@*
begin
case (present_state)
s0 : data_out = 0;
s1 : data_out = 0;
s2 : if (data_in)
data_out = 1;

else
data_out=0;
default : data_out=0;
endcase
end
endmodule
///

158 11 Design Synthesis and Optimization Using RTL Tweaks

The synthesis result is shown in Fig. 11.2 and has the next state logic, state registers
and output combinational logic. As shown output is function of the present state and
input. As compared to Moore state machine, the logic inferred uses more elements
in the output combinational logic.

11.4 Strategies for the Complex FSM Controllers

The following are few of the important strategies useful during the design of the
FSM controllers

1. FSMDescription: Use the multiple procedural blocks to describe the FSM. Use
the state register logic, next state logic and output logic.

2. Glitch-Free Output: To avoid the glitches in the FSM designs, use the register
output and try to have the combinational logic optimization for the better
performance.

3. Encoding: Use the one-hot encoding for the clean and better timing performance
if the area is not an issue.

4. Data and Control Paths: Try to have the separate data and control path for the
FSM controllers. During the data path and control path synthesis try to optimize
for the late arrival signal logic using the architecture and RTL tweaks.

5. Tool-Based Optimization: Use the FSM compilers to extract the states and
optimize for the controller design for the better area and timing.

11.5 How RTL Tweaks Are Useful During Synthesis?

AsASICdesigns are complex,wewill try to use themodular approach by partitioning
the design at sequential boundaries. The better partitioning is helpful during the RTL
design phase and even during the initial floor plan stage. As discussed in the Chap. 3,
we can have the strategies during the RTL design so that we will be able to get the
better design performance.

Fig. 11.2 Synthesis result for the overlapping Mealy machine

11.5 How RTL Tweaks Are Useful During Synthesis? 159

Table 11.2 Arithmetic operation Table 11.1

Control input (sel_in_0) Operation Description

1 y1_out = a_in + b_in
y3_out = a_in * b_in

Perform the addition, multiplication on a_in,
b_in

0 y1_out = c_in + d_in
y3_out = c_in * d_in

Perform the addition, multiplication on c_in,
d_in

Table 11.3 Arithmetic operation Table 11.2

Control input (sel_in_1) Operation Description

1 y2_out = e_in + f_in
y4_out = e_in * f_in

Perform the addition, multiplication on e_in,
f_in

0 y2_out = a_in + b_in
y4_out = a_in * b_in

Perform the addition, multiplication on a_in,
b_in

To have better understanding, consider the design which has the following
functionality (Tables 11.2 and 11.3).

The RTL description using the if-else construct is shown in Example 2, and during
the design the team has not considered for the performance of the design.

Example 2 RTL without any optimization strategies

///

module area_without_optimization (
input a_in,b_in, c_in, d_in, e_in, f_in,

input sel_in_0, sel_in_1,
output reg y1_out, y2_out,
output reg [1:0] y3_out, y4_out);

always @ *
begin

if (sel_in_0)
begin

y1_out = a_in + b_in;
y3_out = a_in * b_in;

end
else
begin

160 11 Design Synthesis and Optimization Using RTL Tweaks

y1_out = c_in + d_in;
y3_out = c_in * d_in;

end
end

always @ *
begin

if (sel_in_1)
begin

y2_out = e_in + f_in;
y4_out = e_in * f_in;

end
else
begin

y2_out = a_in + b_in;
y4_out = a_in * b_in;

end
end
endmodule
///

11.5 How RTL Tweaks Are Useful During Synthesis? 161

Fig. 11.3 RTL schematic for the design without area optimization

During the ASIC synthesis, the design infers the combinational logic and
following are the performance issues for the inferred logic.

1. If the select inputs are late arriving, then the data is unnecessary available at the
arithmetic resource. All the arithmetic resources perform the operations at a time
and the design does not demand for the same.

2. The area and speed can be improved for such type of design using the sharing of
common resources which are adder and multiplier (Fig. 11.3).

162 11 Design Synthesis and Optimization Using RTL Tweaks

Table 11.4 Strategies for resource sharing

Control input (sel_in_0) tmp1 tmp2 Operation Description

1 a_in b_in y1_out = tmp1 + tmp2
y3_out = tmp1 * tmp2

Perform the addition,
multiplication on a_in,
b_in

0 c_in d_in y1_out = tmp1 + tmp2
y3_out = tmp1 * tmp2

Perform the addition,
multiplication on c_in,
d_in

Control input (sel_in_1) tmp3 tmp4 Operation Description

1 e_in f_in y2_out = tmp3 + tmp4
y4_out = tmp3 * tmp4

Perform the addition,
multiplication on e_in,
f_in

0 a_in b_in y2_out = tmp3 + tmp4
y4_out = tmp3 * tmp4

Perform the addition,
multiplication on a_in,
b_in

Strategy: Let us push the arithmetic resources at the output side and the selection
logic at input side.

RTL Tweaks: The above-mentioned strategy can result into the better area and
performance for the design. Try to tweak the RTL with reference to Table 11.4.

This results into the pushing of the common resources at the output side and
improves the design performance. The RTL description is shown in Example 3.

11.5 How RTL Tweaks Are Useful During Synthesis? 163

Example 3 RTL with optimization strategies

///

module area_RTL_optimization(input a_in,b_in, c_in, d_in, e_in, f_in,
input sel_in_0, sel_in_1,
output reg y1_out, y2_out,
output reg [1:0] y3_out, y4_out);

reg tmp1,tmp2, tmp3,tmp4;

always @ *
begin

if (sel_in_0)
begin

tmp1 = a_in;
end
else
begin

tmp1 = c_in;

end
end

always @ *
begin

if (sel_in_0)
begin
tmp2 = b_in;
end
else
begin
tmp2 = d_in;
end

end

always @ *
begin

164 11 Design Synthesis and Optimization Using RTL Tweaks

y1_out = tmp1 + tmp2;
y3_out = tmp1 * tmp2;

end
always @ *
begin

if (sel_in_1)
begin

 tmp3 = e_in;
end
else
begin

 tmp3 = a_in;
end

end

always @ *
begin

if (sel_in_1)
begin

 tmp4 = f_in;
end
else
begin

 tmp4 = b_in;
end

end

always @ *
begin

y2_out = tmp3 + tmp4;
y4_out = tmp3 * tmp4;

end
endmodule

///

As shown in the synthesis schematic, it improves area as the design has only two
adders and two multipliers (Fig. 11.4).

11.6 Synthesis Optimization Techniques Using RTL Tweaks 165

Fig. 11.4 RTL schematic for the design with area optimization

11.6 Synthesis Optimization Techniques Using RTL
Tweaks

During the design synthesis, if the performance is not met then following can be few
of the options

1. Perform the synthesis with the goal of optimization using tool-based commands.
These techniques are discussed in the Chap. 12.

2. Perform the RTL tweaks with the goal to improve for the area, speed and then
perform the synthesis.

3. Perform the architecture and micro-architecture tweaks and then try to tweak the
RTL and run the synthesis.

The RTL tweaks which are useful to boost the design performance are discussed
in this section.

11.6.1 Resource Allocation

This is used for the better synthesis results, and this optimization technique uses the
sharing of hardware resources.

Consider the Verilog procedural block described in Example 4.

166 11 Design Synthesis and Optimization Using RTL Tweaks

Example 4 RTL without any common resource allocation

///

module resource_allocation(input a_in, b_in, c_in, d_in, sel_in,
output reg y_out);

always @ *
begin
 if (sel_in)

y_out = a_in + b_in;

else
y_out = c_in + d_in;

end
endmodule

///

The RTL description (Example) infers two adders to perform the addition. It also
infers the 2:1 MUX to select one of the adder outputs. The synthesis schematic is
shown in Fig. 11.5.

As discussed in Sect. 11.5 if the common resources are pushed at the output side,
then the logic inferred will have the single arithmetic resource (adder). The RTL
tweak is described in Example 5.

Fig. 11.5 Synthesis result without resource allocation

11.6 Synthesis Optimization Techniques Using RTL Tweaks 167

Example 5 RTL with common resource allocation

///

module resource_allocation(input a_in, b_in, c_in, d_in, sel_in,
output y_out);

reg tmp1, tmp2;
always @ *
begin
if (sel_in)
begin

tmp1 = a_in ;
tmp2 = b_in;

end
else
begin

tmp1 = c_in ;
tmp2 = d_in;

end
end

assign y_out = tmp1 + tmp2;
endmodule

///

This technique is called as resource sharing and useful to improve the area of the
design (Fig. 11.6).

11.6.2 Dead Zone Elimination

The piece of the code which is never executed is called as dead zone code. The dead
zone code elimination technique needs to be used for the better synthesis results.

The Verilog RTL is shown in Example 6. As described in the RTL a = 4 and b
= 3 so the condition a > b is always true and hence the some piece of code (check
else clause) is always false and the y2_out = 1 so the synthesis tool will trim the

168 11 Design Synthesis and Optimization Using RTL Tweaks

Fig. 11.6 Synthesis result with resource allocation

Fig. 11.7 Logic trimming due to dead zone-1

large multiplexers inferred due to if-else. So, the RTL tweaks are recommended. Use
constant passing that is y2_out = 1 instead of if-else within the always procedural
block (Fig. 11.7).

11.6 Synthesis Optimization Techniques Using RTL Tweaks 169

Example 6 RTL with dead zone-1

///

module dead_zone(input data_in, clk, output reg y1_out, y2_out);

integer a = 4;
integer b= 3;

always @ *
begin
 if (a>b)

y2_out = 1;

else
y2_out = 0;

end
always @ (posedge clk)
begin
 y1_out <= data_in;
end
endmodule

///

The Verilog RTL is shown in Example 7. As described in the RTL a = 3 and b
= 4 so the condition a > b is always false and hence the some piece of code (check
if clause) is always false and the y2_out = 0 so the synthesis tool will trim the
large multiplexers inferred due to if-else. So, the RTL tweaks are recommended. Use
constant passing that is y2_out = 0 instead of if-else within the always procedural
block (Fig. 11.8).

170 11 Design Synthesis and Optimization Using RTL Tweaks

Fig. 11.8 Logic trimming due to dead zone-2

Example 7 RTL with dead zone-2

///

module dead_zone (input data_in, clk, output reg y1_out, y2_out
);

integer a = 3;
integer b= 4;

always @ *
begin
 if (a>b)

y2_out = 1;

else
y2_out = 0;

end
always @ (posedge clk)
begin

y1_out <= data_in;
end
endmodule

///

11.6 Synthesis Optimization Techniques Using RTL Tweaks 171

11.6.3 Use of Parentheses

TheRTL teammembers should use the parenthesis and grouping of the terms to avoid
the cascade logic. In the RTL description (Example 8), the synthesis tool infers the
priority logic, where a_in has highest priority over other inputs and infers the design
with the combinational logic which as the maximum delay.

Example 8 RTL without parenthesis

///

module grouping_terms(input a_in, b_in, c_in, d_in, e_in,f_in,g_in,h_in,
output y_out);

assign y_out = a_in & b_in & c_in & d_in & e_in & f_in & g_in & h_in ;

endmodule

///

If each stage has delay of 0.5 ns, then the overall delay is around 3.5 ns (Fig. 11.9).

Fig. 11.9 Cascade or priority logic

172 11 Design Synthesis and Optimization Using RTL Tweaks

Fig. 11.10 Logic inferred after RTL tweak strategy-1

Strategy 1
The RTL (Example 8) is tweaked using the grouping of the terms within the paren-
thesis, and it infers the logic with cascade four stages. The delay of each stage is
0.5 ns; then, the overall combinational logic delay is 2 ns (Fig. 11.10).

Example 9 RTL with parenthesis-1

///

module grouping_terms(input a_in, b_in, c_in, d_in, e_in,f_in,g_in,h_in,
output y_out);

assign y_out = (a_in & b_in) & (c_in & d_in) & (e_in & f_in) & (g_in &
h_in) ;

endmodule
///

11.6 Synthesis Optimization Techniques Using RTL Tweaks 173

Fig. 11.11 Logic inferred after RTL tweak strategy-2

Strategy 2
Try to have the RTL tweak with better structuring and grouping of the terms to infer
logic with the three stages. This can be multiplexed logic or parallel logic.

Example 10 RTL with parenthesis-2

///

module grouping_terms(input a_in, b_in, c_in, d_in, e_in,f_in,g_in,h_in,
output y_out);

assign y_out = ((a_in & b_in) & (c_in & d_in)) & ((e_in & f_in) & (g_in &
h_in)) ;

endmodule
///

Due to grouping, the logic has three stages and the overall delay is 1.5 ns, thus
with reference to original RTL the team is successful to reduce the delay by 2 ns
hence the improvement in the design performance (Fig. 11.11).

11.6.4 Grouping the Terms

Consider the RTL description shown in Example 11. During synthesis, the design
infers the cascade logic using the arithmetic resources (adder, subtractor). If the

174 11 Design Synthesis and Optimization Using RTL Tweaks

Fig. 11.12 Synthesis result without use of parentheses

propagation delay of the adder is 1 ns and subtractor is 0.5 ns, then overall delay is
2.0 ns (Fig. 11.12).

Example 11 RTL without grouping

///

module grouping_terms(input a_in,b_in,c_in,d_in, output y_out);

assign y_out = a_in + b_in - c_in -d_in;

endmodule

///

If the RTL described in Example 12 is tweaked using the parenthesis to eliminate
the cascade stage, then the design performance can be improved by few nanoseconds.
Check for the RTL tweak recommended in the Example.

Example 12 RTL with grouping

///

module grouping_terms(input a_in,b_in,c_in,d_in, output y_out);

assign y_out = (a_in + b_in) – (c_in +d_in);

endmodule

///

11.6 Synthesis Optimization Techniques Using RTL Tweaks 175

Fig. 11.13 Synthesis result with use of parentheses

The synthesis tool during optimization phase will infer the two-stage logic, and
the overall delay is 1.5 ns thus reduction of 0.5 ns delay (Fig. 11.13).

11.7 FPGA Synthesis

It uses the dedicated FPGA resources to represent the gate-level netlist. These
resources are CLB (slice register and LUTs) IOBs (Figs. 11.14 and 11.15).

Fig. 11.14 FPGA logic inferred using the slice register and MUX

Fig. 11.15 FPGA logic inferred using CLB (LUT, register, MUX)

176 11 Design Synthesis and Optimization Using RTL Tweaks

Example 13 Sequential logic description

///

module fpga_design (input clk, data_in, sel_in, output q2_out);
reg q1_out;
always @ (posedge clk)
begin

q1_out <= data_in;
end

assign q2_out = (sel_in) ? q1_out : data_in;
endmodule

///

Example 14 Sequential logic description-1

///

module fpga_design(input clk, a_in,b_in,sel_in, output q2_out);
reg q1_out;
always @ (posedge clk)
begin

q1_out <= q_out;
end
assign q_out = a_in ^ b_in;
assign q2_out = (sel_in) ? q1_out : q_out;

endmodule

///

ASIC and FPGA synthesis differ in various ways, and for more details, refer the
Chaps. 18 and 19.

11.8 Chapter Summary 177

11.8 Chapter Summary

Following are important points to conclude the chapter

1. Synthesis tool carries out the optimization to meet the area and speed constraints.
2. Optimization is based on various cost functions.
3. RTL tweaks such as resource sharing, dead zone elimination and the grouping

of terms are useful to improve the design performance.
4. FPGAsynthesis tool uses the FPGA resources such as LUTs, IOBs, slice registers

to infer the logic.
5. The cascade stages will have more delay as compared to parallel logic.
6. Use the multiplexed logic to improve the design performance.

Chapter 12
Synthesis and Optimization Techniques

As discussed in the previous chapters, the synthesis is carried out to get the lower
level of abstraction of the design. To have the gate-level netlist, we will perform
logic synthesis, and to have the device or switch-level abstraction, we will perform
the physical synthesis. The chapter is useful to understand the ASIC synthesis using
Synopsys DC and the optimization techniques used to meet the desired constraints.
The synthesis for the complex design is performed at the block and top level, and
during the logic synthesis, our goal is to meet for the area and speed constraints.
Synopsys DC is not used to optimize for the power. The next subsequent sections
discuss the synthesis and optimization techniques.

12.1 Introduction

Use the synopsys_dc.setup to setup the design compiler for the synthesis and opti-
mization. There should be two startup files; one should be in the current working
directory, and another should be in the root directory where the Design Compiler is
installed. To use the tool, the following important parameters need to be setup.

1. search_path: This parameter is used to search for the synthesis technology
library and used as the reference during synthesis.

2. target_library: This parameter is used by the synthesis tool while mapping the
logic cells. The target library contains the logic cells.

3. symbol_library: All the logic cells have symbolical representation. The param-
eter is used to point to the library which has the visual information for the logic
cells present in the technology synthesis library.

Tool-based optimization strategies using Synopsys DC are useful to improve the performance of
the design.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_12

179

180 12 Synthesis and Optimization Techniques

Table 12.1 Design objects used by synthesis tool

Design object Description

Cell Cell is also called as instance. The instantiated name of the sub-design is called
as cell

Reference It is original design to which cell or instance refers. For example, instantiated
sub-design must refer to the design which consists of the functional description
of the sub-design

Ports The primary inputs and outputs or IO’s of the design are called as ports

Pins The primary inputs, outputs, IO’s of cells in the design are called as pins

Net Wires used for the connection between ports of the pins of the different designs
are called as net

Clock The input port or pin used as clock source is called as clock

Library The technology-specific cells used for targeting for synthesis, linking or for
reference are called as library

4. link library: The tool uses the cells from the target_library during mapping the
functionality; this parameter is used to point to the logic gates in the synthesis
technology library.

The above four parameters for .synopsys_dc.setup are specified by using
following

set search_path “./synopsys/libraries/syn/cell_library/syn”
set target_library “tcbn65lpwc.db, tcbn65lpbc.db”
set link_library “$target_library $symbol_library”
set symbol_library “standard.sldb dw_foundation.sldb”

Once the above parameters are set up for the required library, then the synthesis
tool can be invoked at the command prompt.

Every design is the description of the logic circuit to perform some of the oper-
ations. The design can be single module description or can consist of the multiple
modules. The design objects are described in Table 12.1.

12.2 Synthesis Using Design Compiler

The synthesis tool uses the RTL designVerilog (.v) files, constraints (.sdc) and library
(.lib) as an inputs to get the optimized gate-level netlist using standard cells available
in the library. During the ASIC synthesis, few steps are performed, and these are
mainly translate, map and optimize. Figure 12.1 gives the brief information about
the ASIC synthesis steps to generate the gate-level netlist.

12.2 Synthesis Using Design Compiler 181

1. Read Library: To perform the logic synthesis, the synthesis tool reads the
DesignWare libraries, technology libraries, and symbol libraries.
What the DesignWare library consists of?
The DesignWare library consists of the complex cells such as adders, compara-
tors, multipliers, etc.
What the technology library consists of?
The technology library consists of the logic gates, flip-flops, and latches.
During synthesis, the synthesis tool algorithms determine when to use the tech-
nology library cells and when to use the DesignWare library components. These
library cells are used efficiently to generate the gate-level netlist.

Fig. 12.1 ASIC synthesis steps

182 12 Synthesis and Optimization Techniques

2. Read RTL Description: The next step is to read the RTL description that is
Verilog (.v) source files.

3. Map the link Library: The synthesis tool after reading the libraries and the RTL
description performs few important steps.

(a) Design optimization.
(b) Technology-independent optimization.
(c) Mapping the logic using the technology library. The above process is called

as linking the logic to the desired target library. So basically, link library
can be IO library, cell library or macro library and used to link the design,
and target library is used while optimizing the design.

4. Use Design Constraints: The synthesis tool uses the design constraints such as
area, speed and power while optimizing the design using the standard cells which
are available in the target library. The DC doesn’t optimize for the power and
power planning and optimization we can have during the physical design flow.

5. Map the Design to Target Library: For efficient RTL coding, it is required that
RTL design engineer should have good understanding of the target standard cell
library. After the design is optimized, then the design is ready for the Design for
Testability (DFT) that is to detect early faults in the design. During RTL design
stage only, the DFT-friendly RTL needs to be described to enable quick scan
insertions and testing for various faults in the design.

6. Optimize and Save Netlist: The optimized netlist can be in the Verilog (.v)
format or in the database (.ddc) format and will be used by the placement and
routing tool. Based on the routing the back-annotation can be performed with
actual routing delays for accurate timing analysis. If timing goals are not met,
then the design can go through the resynthesis so that the timing goals can meet.

12.3 Synthesis and Optimization Flow

Modern ASIC designs are extraordinarily complex in the and consists of few million
or billion gates. Design complexity has grown exponentially in the past few decades
due to the demand of the sophisticated and intelligent devices and IPs. In such
scenario, there is additional overhead and cost during the design synthesis and timing
closure. In such scenario, the synthesis with the optimization goal can be better
technique to meet the block- and top-level constraints. The Synopsys DC is leading
EDA tool used to perform the design synthesis, and Synopsys PT is used for the
timing closure.

The design constraints are classified as design rule constraints and optimization
constraints and discussed in the Chaps. 10 and 11.

12.3 Synthesis and Optimization Flow 183

The synthesis and optimization flow is shown in Fig. 12.2. These are also treated
as the steps while carrying out synthesis for any design. The compilation strategy
can be chosen as top-down or bottom-up. The commands used during synthesis are
discussed in the subsequent session.

1. Read Design Object: Design object is Verilog RTL code which is simulated for
the functional correctness. The commands used at this step are

analyze, elaborate, read

Set the design constraints

Optimize design

Analyze and debug design

Generate the reports and
scripts

Read Design Object

Specify technology
requirements

Define the design
environment

Select the compilation
strategies

Fig. 12.2 Flow for synthesis and optimization

184 12 Synthesis and Optimization Techniques

2. Specify Technology Requirements: In these steps, the design rules and libraries
required need to be specified. The commands used in this step are

Library Objects
link_library
target_library
symbol_library
Design Rules
set_max_transition
set_min_transition
set_max_fanout
set_min_fanout
set_max_capacitance
set_min_capacitance

3. Define the Design Environment: The design environment includes the process,
temperature, voltage conditions, drive strength and effect of load driving the
design. The commands used are

set_operating_conditions
set_wire_load
set_drive
set_driving_cell
set_load
set_fanout_load

4. Select Compilation Strategies: The strategies used for optimizing hierarchical
design include top-down, bottom-up and compile-characterize. The advantages
and disadvantages of each strategy are discussed in the subsequent section.

5. Set the Design Constraints: The constraints need to be set for the design
optimization and for the timing analysis. The commands used in this step are

create_clock
set_clock_skew
set_input_delay
set_output_delay
set_max_area

12.3 Synthesis and Optimization Flow 185

Fig. 12.3 Full adder schematic

6. Optimize Design: Perform the design synthesis to generate technology-specific
gate-level netlist. The command used is

compile

7. Analyze and Debug the Design: This step is important to understand the poten-
tial issues in the design by generating various reports. The commands used in
this step are

check_design
report_area
report_constraint
report_timing

8. Generate Various Reports and Scripts: The design database is stored in the
form of script file.

Consider the top-level object as full adder with inputs ‘a_in, b_in, c_in’ and
outputs ‘sum_out, carry_out’ (Fig. 12.3).

The top-down compilation run is shown by using the following script and can be
used in the practical scenario. To synthesize the design and to compile, use the script
shown in Example 1.

186 12 Synthesis and Optimization Techniques

Example 1 Key steps for synthesis and compilation

/* read the design object */
read -format verilog full_adder.v
/* specify the technology requirements */
target_library = my_library.db
symbol_library = my_library.sdb
link_library = "*" + target_library
/* define the design environment */
set_load 2.0 sum_out
set_load 1.2 carry_out
set_driving_cell -cell FD1 all_inputs()
set_drive 0 clk_name
/* set the design constraints */
set_input_delay 1.25 -clock clk {a_in, b_in}
set_input_delay 3.0 -clock clk c_in
set_max_area 0
/* synthesize the design */
compile
/* generates reports */
report_constraint
report_area
/* save the design database */
write -format db -hierarchy -output full_adder.db

12.4 Area Optimization Techniques

There are several techniques used for minimizing the overall area of the design. The
highest priority of the designer is to optimize for the timing followed by area. There
are several efficient area minimization techniques at the RTL level. In the previous
section, we have discussed the resource sharing. Following are the key guidelines
used to optimize for the area

1. Avoid use of the combinational logic as individual block or module
2. Do not use the glue logic between two modules
3. Use set_max_area attribute while synthesizing the design.

12.4 Area Optimization Techniques 187

Fig. 12.4 Combinational logic as individual module

12.4.1 Avoid Use of Combinational Logic as Individual Block

It is recommended that do not use the combinational logic as individual block. If the
individual combinational module is used, then design compiler will not be able to
optimize the individual block. This is not a good design partitioning. The hierarchy
of the module is fixed, and design compiler will not be able to optimize for the
hierarchical combinational designs. Consider the scenario shown in Fig. 12.4. It has
module I and module II, module II is separate combinational block so the design
compiler will not be able to optimize module II, as design compiler doesn’t optimize
the port interfaces.

If the design is partitioned properly, then the overall optimization will boost the
design performance. A better partitioned ASIC design should have combined func-
tionality of module I and module II. The functionality of A+ B in the single module
is shown in Fig. 12.5 and results into the faster optimization for the design.

12.4.2 Avoid Use of Glue Logic Between Two Modules

The glue logic between two different blocks is shown in Fig. 12.6. Such type of
design partitioning strategy is not good and will insert more combinational delays,
the reason being the logic gate cannot be optimized by the design compiler. To avoid
this type of scenario, it is recommended to use the group command. Either group

188 12 Synthesis and Optimization Techniques

Fig. 12.5 Eliminating individual combinational module

the glue logic in the module I or module II. Following command used to group the
glue logic into module I

dc_shell> group {m1, m3} –design_name moduleIII cell_name or_gate

Following command used to group the glue logic into module II

dc_shell> group {m2, m2} –design_name moduleIII
cell_name or_gate

12.4.3 Use of set_max_area Attribute

To optimize for the area, it is recommended to use the attribute set_max_area. This
attribute is effective in the optimization of the design. Design compiler gives the
highest priority to the timing optimization. If timing is met, then only the area
optimization phase can start. The priorities for the design optimization are listed
below

12.4 Area Optimization Techniques 189

Fig. 12.6 Glue logic between two blocks

1. Design rule constraints (DRC)
2. Timing
3. Power
4. Area.

12.4.4 Area Report

The area is reported using report_area command. The sample area report is shown
the Example 2. The area report for any design consists of the number of ports, nets,
references. It also gives information about the combinational, sequential, and total
cell area.

190 12 Synthesis and Optimization Techniques

Example 2 Area report

Number of ports: 3
Number of nets: 8
Number of cells: 7
Number of references: 2
Combina onal area: 100.349998
Non combina onal area: 125.440002
Net Interconnect area: undefined (Wire load has zero net area)
Total cell area: 225.790009
Total area: undefined

12.5 Design Partitioning and Structuring

The design needs to be partitioned for the better synthesis and optimization. Parti-
tioning is carried at functional level by considering the interface boundaries and the
clock andpower domains. It is the practical reality that the designwhich is better parti-
tioned generates better synthesis results and even it reduces the synthesis runtime.
The following are important guidelines recommended for the design partitioning

1. Partition the design for the design reuse.
2. For the different functionality, use the different module. That is use the modular

approach during the design.
3. Use the combinational logic in the same block which reduces the insertion

delays.
4. Use the separate block or structure logic for the random logic.
5. Partition the design at the top level.
6. Do not use the glue logic at the top level.
7. Use the separate module for state machines that is isolating the state machines

form the other logic.
8. Limit the logic size to maximum 10K gates for every block.
9. Avoid use of the multiple clocks in the same block.
10. Isolate the synchronizers for the multiple clock domain designs (Fig. 12.7).

Consider the design which already we have discussed during the Chap. 9.

Clock domain 1: It is controlled by the clk1, and the functional blocks of this clock
domain are

1. ALU
2. Internal memory
3. Interrupt controller
4. Pointers and counters

12.5 Design Partitioning and Structuring 191

Pointers
and

Counters

Interrupt
Controller

Internal
Memory

IO
Interface Serial

IO

Processor Configuration Management

Clock Management and Timing Control

ALU

Floating
Point

Engine

High
Speed
Interfaces

Fig. 12.7 Design with multiple clock domains and functional blocks

5. Serial IO
6. IO interfaces.

In the architecture clock domain 1 block is indicated by the yellow color.

Clock domain 2: It is controlled by the clk2, and the functional blocks of this clock
domain are

1. Floating Point Unit
2. High-speed interfaces

In the architecture clock domain 2 blocks are indicated by the white color.
We can have the strategy for the synthesis and important highlights are

(a) Have clock and constraint definitions for each clock domain.
(b) Perform the block-level synthesis using block-level constraints.
(c) Perform the top-level synthesis using the top-level constraints.
(d) Use the strategies as bottom-up of top-down during the compilation. It

depends on the design complexity.

192 12 Synthesis and Optimization Techniques

(e) Use do not touch attribute if the constraints are met during the block-level
synthesis.

(f) Check for the violators and fix them run the optimization.
(g) Recompile with various options and perform the synthesis to lead the better

design optimization.

12.6 Compilation Strategy

The methods used for compilation of any design can have top-down or bottom-
up compilation approach. Each compilation method has its own advantages and
disadvantages.

12.6.1 Top-Down Compilation

The top-down compilation uses the top-level design constraints and easier to execute
as compare to the bottom-up compilation approach. Following are the advantages
and disadvantages for the top-down compilation

Advantages

1. Optimization engines work on full design, complete paths
2. Usually get best optimization result
3. No iteration required
4. Simpler constraints
5. Simpler data management.

Disadvantages

1. Longer runtime
2. More memory requirements
3. More runtime.

The commands used for the top-down compilation are

dc_shell> current_design TOP
dc_shell> compile –timing_high_effort_script

12.6 Compilation Strategy 193

12.6.2 Bottom-Up Compilation

The bottom-up compilation compiles submodule first, and then, it moves toward top
level. The care must be taken by the designer to set “set_dont_touch” attribute on
the submodules to avoid recompilation of the submodules. The designer needs to
know the timing information for the inputs and outputs for each of the submodule.
The advantages and disadvantages are discussed below

Advantages

1. Faster as compared to top-down compilation
2. Less processing required per run
3. Less memory requirement.

Disadvantages

1. Optimization works on the submodule or subdesign
2. More iteration required
3. More hierarchies to maintain.

Consider the design has two submodules. The commands used for the bottom-up
compilation are

dc_shell> current_design submodule1
dc_shell> compile –timing_high_effort_script
dc_shell> set_dont_touch submodule1
dc_shell> current_design submodule2
dc_shell > compile –timing_high_effort_script
dc_shell> set_dont_touch submodule2
dc_shell> current_design TOP
dc_shell> compile –timing_high_effort_script

12.7 Chapter Summary

Following are the important points to conclude the chapter

1. Constraints are of mainly optimization and design rule constraints.
2. Do not partition the design across combinational boundaries as it incurs

significant amount of insertion delay.

194 12 Synthesis and Optimization Techniques

3. Choose for the compilation strategies either top-down or bottom-up depending
on the design complexity.

4. Synopsys DC will not be able to optimize for the power.
5. Partition the designby considering the various clockdomains andpower domains.
6. Use the recompile with option to meet the optimization goals.

Chapter 13
Design Optimization and Scenarios

During the logic optimization, we will try to optimize for the area and speed. The
following sections are useful to address few of the optimization strategies used
for during the ASIC synthesis. These strategies can be used during synthesis and
optimization of the complex ASIC designs.

With the optimization constraints and performance improvement, the design rule
constraints are discussed in this chapter. The priorities for the design optimization
are listed below

1. Design rule constraints (DRC)
2. Timing
3. Power
4. Area.

13.1 Design Rule Constraints (DRC)

The main important design rule constraints are fanout, capacitance, and transi-
tion. These constraints are having high priority during the synthesis as compared
to optimization constraints.

Design optimization for the area and speed is important to have better performance of ASIC.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_13

195

196 13 Design Optimization and Scenarios

Fig. 13.1 Fanout of the cell

13.1.1 max_fanout

It is used to measure the number of loads a port or load can drive.
Consider the logic gate driving the multiple gates as shown in Fig. 13.1.
The technology library has information about the default fanout. Designer can

use the following command to get the fanout

get_attribute library_name default_fanout_load

13.1.2 max_transition

The maximum transition from ‘0’ to ‘1’ or from ‘1’ to ‘0’ for specific net or entire
design can be specified using Synopsys DC. We know the transition time is due to
the RC time constant (Fig. 13.2).

Fig. 13.2 Transition from ‘1’ to ‘0’, and ‘0’ to ‘1’

13.1 Design Rule Constraints (DRC) 197

How DC meets the specified maximum transition?

Consider the librarywhich specifiesmaximum transition of ‘4’ and designer specifies
max_transition of ‘2’. What DC does is that it will try to meet the max_transition of
2.

The following Synopsys DC command is used to specify the max_transition.

set_max_transition <value> <design_name/port_name>

13.1.3 max_capacitance

It is used to provide information about the maximum net capacitance.
During the compilation, the DC takes care about the violations due to

max_capacitance (Fig. 13.3).
So we know the max_capacitance constraint at output of driving cell is due to

the net capacitance and the capacitance of pins driven by cell. Designer can use the
following command to define max_capacitance

set_max_capacitance <value> <port_name/design_name>

As discussed, use the following commands to define the design rule constraints

Fig. 13.3 Capacitance at driving cell

198 13 Design Optimization and Scenarios

Fig. 13.4 Clock network latency

set_max_transition <value> <design_name/port_name >
set_max_fanout <value> <port_name/design_name >
set_max_capacitance <value> <design_name/port_name>

13.2 Clock Definitions and Latency

The clock definitions and latencies play an important role during the design. During
the logic design, the clocking information that is information about the clock tree is
not available. The section discusses various terms which we need to specify during
the design synthesis.

13.2.1 Clock Network Latency

If we consider any ASIC, then the clock network latency and clock distribution
decide the performance of any synchronous design. The PLL is used as clock source,
and during STA it is essential to define the clock source and clock network latency.
Figure 13.4 shows both the latencies.

13.2.2 Generated Clock

The generated clocks in the ASIC or SOC can be used as clocking source to the
sequential blocks. The clocks are generated by using the clock divider networks.
Figure 13.5 shows the generated clock using the clock divider. The useful Synopsys
PT commands are described in Table 13.1.

13.2 Clock Definitions and Latency 199

Fig. 13.5 Generated clock

Table 13.1 Clock and generated clock commands

Command Description

create_clock –period 10 waveform {0 5}
[get_ports clk_PLL]

Used to define clock having period 10 ns. The
rising edge at 0 ns and falling edge at 5 ns

Create_generated_clock –name CLK_DIV_2
–source UPLL0/clkout –divide_by 2 [get_pins
UFF0/Q]

Generated clock CLK_DIV_2 at q

Table 13.2 Commands to specify false path

Command Description

set_false_path –from [get_clock Tclk_max] –to
[get_clocks Tclk_min]

Used to set the false path between the
Tclk_max and Tclk_min

set_false_path –through [get_pins
UMUX/clk_select]

To set the false path with respect to
clk_select

13.2.3 Clock Muxing and False Paths

Most of the times, we need to have clock multiplexing. The minimum and maximum
clocks can be used in the design depending on the design requirements. During the
ASIC testing, the minimum clock can be used. The false paths between these clocks
need to be reported to the timing analyzer. To set the false path, use the command
shown in Table 13.2 (Fig. 13.6).

13.2.4 Clock Gating

The clock gating checks need to be performed by the timing analyzer, and the
command is described in Table 13.3 (Fig. 13.7).

200 13 Design Optimization and Scenarios

Fig. 13.6 Clock muxing and false path

Table 13.3 Clock gating checks commands

Command Description

create_clock –period 10 [get_ports
System_CLK]

To create the system clock of period 10 ns

create_generated_clock –name –divide_by 1
System_CLK [get pins UAND1/Z]

To get the same clock CLK_gate

Fig. 13.7 Clock gating

13.3 Commands Useful During Design Synthesis
and Optimization

The following section discusses the DC commands used during the optimization and
performance improvement of the design.

13.3 Commands Useful During Design Synthesis and Optimization 201

13.3.1 set_dont_use

The command ‘set_dont_use’ can be used if the synthesis engineer wishes not to
refer the cells from the technology library.

If ‘don’t_touch’ attribute is used, then this command ignores the cells from the
technology library.

The command is described below

set_dont_use library_name/cell_name

Consider cell name as XOR2; then, during the optimization the XOR2 cell is not
used.

13.3.2 set_dont_touch

Most of the time during the optimization phase, we don’t need to optimize the design
which has already met the timing and area constraints. For example, consider the
design shown in Fig. 13.8.

Processor

DSP logic

Memory
Controller

Internal
Memory

Control &
Timing

High Speed
Interface

Parallel IO

Serial IO

BIST

Fig. 13.8 SOC top-level design diagram

202 13 Design Optimization and Scenarios

If the functional design processor, DSP logic, andmemory controller havemet the
timing and area constraints and as further optimization is not required, the dont_touch
command can be used.

The command is described below

set_dont_touch design_name

This we can prevent the synthesis re-optimization of the design functionality.
During logic synthesis, we need to use the hand-instantiated clock trees and as

DC doesn’t perform the synthesis for the clock tree use the don’t_touch attribute for
the same.

So if current design is soc_top, then we can do the following to allow don’t touch
of the functional block

current_design = soc_top
set_dont_touch u1
set_dont_touch u2
set_dont_touch u3

where the u1, u2, u3 are the instances of the processor, DSP logic, memory controller,
respectively.

13.3.3 set_prefer

This command is used when the synthesis engineer wishes to change the priority of
cells chosen by the DC during technology translation.

Now consider that the design netlist needs to be mapped to another technology
library and then the command can be used and is described below

set_prefer library_name/libaray_name

13.3.4 Command for the Design Flattening

We can have the hierarchical or flattened design. Now consider the following
expressions used in Verilog design.

Y1 = a_in & b_in;
Y2 = c_in & Y1;

The synthesis tool will infer the cascade logic and is shown in Fig. 13.9.
After flattening, we can get the expression as

Y2 = (c_in & a_in) & (c_in & b_in);

13.3 Commands Useful During Design Synthesis and Optimization 203

Fig. 13.9 Gate-level
structure without flattening

set_flatten command is used to flatten the design.
The command is described as or may be referred as the switch

set_flatten true

If we refer the basic digital circuits, then the combinational logic is expressed
using sum of product (sop). The SOP expression will improve the parallelism and
the speed of the design.

Now let us imagine that can I flatten the multiplexers, XOR gates, and adders?

The answer is, it is not recommended to use flattening for these types of logic due
to the use of the control elements. During optimization, the DC will never perform
flattening unless and until it is specified.

Still there is always limitation to get the flattened netlist. It is recommended that
if the design has 10 or less number of inputs then the flatten switch can be used.

13.3.5 Commands Used for Structuring

If the objective is to improve the area or gate count, then structuring is recommended.
The command is described below

set_structure –timing true

We can have the Boolean structuring or timing-driven structuring. By default, the
DC uses the timing-driven structuring. To execute the Boolean structuring, we need
to direct the synthesis tool.

13.3.6 Group and Ungroup Commands

To remove the hierarchy, the ‘ungroup’ command is used and to create the hierarchy
the ‘group’ command is used.

The command is described below

ungroup –flatten –all

204 13 Design Optimization and Scenarios

This will allow ungrouping of all the levels below soc_top design. But DC will
take care that the design functionality for which the set_dont_touch attribute was
applied will not be disturbed.

To ungroup all the synthetic designs before compiling, the following command
can be used

replace_synthetic –ungroup

To group command can be used to have the new hierarchy. The command is give
below

Group (u1, u2) –design_name name_block –cell_name soc_top_inst

So as discussed, the grouping forms the new instance soc_top_inst using the
instances u1, u2.

13.4 Timing Optimization and Performance Improvement

While optimization, the timinghas highest priority as compared to the power and area.
During the first phase of optimization, the design compiler checks for the design rule
constraints (DRC) violations, then the timing violations and the power constraints,
and finally the area constraints. This section discusses the few timing optimization
commands supported by the design compiler.

13.4.1 Design Compilation with ‘map_effort high’

Most of the time, design engineer uses the option as map_effort medium while
performing the synthesis. It is advisable that during synthesis of the first phase
designer can use the option as map_effort medium as it reduces the compilation
time. If the deign constraints are not met, then the designer can go for the incre-
mental compilation with the option asmap_effort high. This can improve the design
performance by at least 5–10%.

The sdc command is shown below

dc_shell> compile –map_effort_high –incremental_mapping

13.4 Timing Optimization and Performance Improvement 205

13.4.2 Logical Flattening

The design hierarchy of the design can be broken by using logical flattening of the
design. The option allows all the logic gates of the deign at the same level of hierarchy.
This allows the compiler to have better optimization and better area utilization for
the design. If the hierarchical design is large, then this option may not work out. If
number of hierarchies in the design increases, then compiler needs the larger amount
of time during the design optimization phase.

Use the following command to achieve the logical flattening for the design

dc_shell> ungroup –all -flatten
dc_shell> compile –map_effort high –incremental mapping
dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

13.4.3 Use of group_path Command

The design performance can boost up to 10% by using the map_effort high option.
But if timing is not met with the incremental compilation for the specified design
constraints, then it is essential to group the critical timing paths and use the weight
factor to boost the design performance. This command is useful to improve the timing
performance. The command is shown below

dc_shell> group_path –name critical1 –from <input_name> –to
<output_name> –weight <weight factor>

Consider the design scenario which has the setup violation of 0.38 ns. The setup
violation is the difference between the data required time and data arrival time. So,
the slack is negative and setup time is violated.

dc_shell> read –format Verilog combinational_design.v
dc_shell> create_clock –name clk –period 15
dc_shell> set_input_delay 3 –clock clk in_a
dc_shell> set_input_delay 3 –clock clk in_b
dc_shell> set_input_delay 3 –clock clk c_in
dc_shell> set_output_delay 3 –clock c_out
dc_shell> current_design = combinational_design
dc_shell> compile –map_effort medium

206 13 Design Optimization and Scenarios

dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

After the design is synthesized successfully, use the report_timing command.
The timing report for the design is obtained with the multiple options as shown in
the above script and shown in Example 1.

Example 1 Timing report with negative slack

Startpoint: c_in (input port)
Endpoint: c_out (output port)
Path Group: clk
Path Type: max
Point Incr Path
--
input external delay 0.00 0.00 f
c_in (in) 0.00 0.00 f
U19/Z (AN2) 0.87 0.87 f
U18/Z (EO) 1.13 2.00 f
add_8/U1_1/CO (FA1A) 2.27 4.27 f
add_8/U1_2/CO (FA1A) 1.17 5.45 f
add_8/U1_3/CO (FA1A) 1.17 6.62 f
add_8/U1_4/CO (FA1A) 1.17 7.80 f
add_8/U1_5/CO (FA1A) 1.17 8.97 f
add_8/U1_6/CO (FA1A) 1.17 10.14 f
add_8/U1_7/CO (FA1A) 1.17 11.32 f
U2/Z (EO) 1.06 12.38 f
C_out (out) 0.00 12.38 f
data arrival Ɵme 12.38 f

clock clk (rising edge) 15.00 15.00
clock network delay (ideal) 0.00 15.00
output external delay -3.00 12.00
data required Ɵme 12.00

Data required Ɵme 12.00
Data arrival Ɵme -12.38
Slack (violated) -0.38

Tofix the setup violation and to boost the design performance, the designer can use
the group_pathwith theweight factor.More theweight factor,more is the compilation
time.

13.4 Timing Optimization and Performance Improvement 207

dc_shell> group_path –name critical1 –from c_in –to c_out –weight 8
dc_shell> compile –map_effort high –incremental mapping
dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

The above commands generate the timing report with positive slack and remove
setup violation as shown in Example 2.

Example 2 Timing report with the positive slack

Startpoint: c_in (input port)
Endpoint: c_out (output port)
Path Group: max
Path Type: max
Point Incr Path
--
input external delay 0.00 0.00 f
c_in (in) 0.00 0.00 f
U19/Z (AN2) 0.87 0.87 f
U18/Z (EO) 1.13 2.00 r
add_8/U1_1/CO (FA1A) 2.27 4.27 f
add_8/U1_2/CO (FA1A) 1.17 5.45 f
add_8/U1_3/CO (FA1A) 1.17 6.62 r
add_8/U1_4/CO (FA1A) 1.17 7.80 f
add_8/U1_5/CO (FA1A) 1.19 8.99 r
add_8/U1_6/CO (FA1A) 1.15 10.14 f
add_8/U1_7/CO (FA1A) 0.79 10.93 f
U2/Z (EO) 1.06 11.99 f
C_out (out) 0.00 11.99 f
data arrival Ɵme 11.99 f

clock clk (rising edge) 15.00 15.00
clock network delay (ideal) 0.00 15.00
output external delay -3.00 12.00
data required Ɵme 12.00

Data required Ɵme 12.00
Data arrival Ɵme -11.99
Slack (met) 0.01

As shown in the above timing report for the max analysis with the compile_map
high option and weight factor of 5, the slack is met.

208 13 Design Optimization and Scenarios

13.4.4 Submodule Characterizing

In the practical ASIC designs, the design can have multiple hierarchies. Consider
that the top-level design consists of submodules X, Y, Z.

X

Y

Z

If the synthesis is performed for the individual blocks, then the timing can meet.
When these submodules are instantiated in the top, then it may be possible that they
do not meet the timing. That is, block-level timing met but the top-level timing fails.

The reason for this may be the glue logic used in between the submodules X, Y,
Z or the improper partitioning at the top-level design hierarchy.

Under such circumstances to meet the design constraints, it is advisable to use
the characterize command. This command allows the capturing of the boundary
conditions for the submodule based on the top-level hierarchy environment. Each
submodule can be compiled and can characterize independently.

The following is the script which can be used. Consider the submodule X, Y, Z
instance names as I1, I2, and I3.

dc_shell> current_design = TOP
dc_shell> characterize I1
dc_shell> compile –map_effort high –incremental mapping
dc_shell> current_design = TOP
dc_shell> characterize I2
dc_shell> compile –map_effort high –incremental mapping
dc_shell> current_design = TOP
dc_shell> characterize I3
dc_shell> compile –map_effort high –incremental mapping
dc_shell> current_design = TOP

13.4 Timing Optimization and Performance Improvement 209

13.4.5 Register Balancing

Register balancing is efficient and powerful technique to have the pipelined stage.
This technique improves the design performance by moving the logic and hence
reduces the register-to-register delay. Consider the pipelined design shown in
Fig. 13.10 and consisting of the three flip-flops and combinational logic.

Depending on the logic density of the combinational design, the arrival time may
be different in the first and second reg-to-reg path. This can be balanced using the
logic split technique by retaining the same functionality. To improve the design
performance, it is recommended to use the additional pipelined stages.

The techniques like register balancing can be used to split the combinational
logic from one of the pipelined stages to another pipelined stage without affecting
the functionality of the design. This is achieved by compiler by using the following
set of commands

dc_shell> balance_registers
dc_shell> report_timing –path full –delay max –max_path 1 –nworst 1

13.5 FSM Optimization

For the optimization of the finite state machines, the FSM compiler is used. The use
of FSM compiler is with objective to optimize for the area and to improve the design
performance. In the practical ASIC designs, the state machines are always coded as
a separate module block. The FSM designs should have the clean data and timing
path. It is recommended to use the suitable coding style while designing the state
machine. The state machines should have the glitch-free output.

Fig. 13.10 Pipelined stages

210 13 Design Optimization and Scenarios

The following script (Example 3) can be used for the FSM extraction and
optimization.

Example 3 FSM extraction script

/* read the design object */
dc_shell> read -format verilog state_machines.v
/* Map the design */
dc_shell> compile –map_effort medium
/* if the design is not parƟƟoned then group the logic */
dc_shell> set_fsm_state_vector { <flip_flop_name>, <flip_flop_name>,…}
dc_shell> group –fsm –design_name <fsm_design_name>
/* extract the state machine from netlist in the state machine table
format */
dc_shell> set_fsm_state_vector { <flip_flop_name>, <flip_flop_name>,…}
dc_shell> set_fsm_encoding { “state0=0”, “state1=1”, …….}
dc_shell>extract
/* write the design in the FSM format */
dc_shell>write –format st –output state_machine.st
/* if the design is already in the state machine format then read the
design */
dc_shell>read –format st state_machine.st
/* define the order of the state */
dc_shell>set_fsm_order {state0,state1,….}
/* define the encoding style */
dc_shell> set_fsm_encoding_style <encoding_style>
/* compile the design */
dc_shell> compile –map_effort high

13.6 Fixing Hold Violations

To fix the setup violations, it is essential to modify the architecture of the design and
in turn it has greater impact on the RTL coding of the design. The setup violations are
fixed during the pre-layout STA, and hold violations can be fixed during post-layout
STA phase as routing information is available after P and R. To fix the hold violations
use the following command

dc_shell> set_fix_hold clk1
dc_shell> compile –map_effort_high- incremental_mapping

13.7 Report Command 211

13.7 Report Command

The following are few commands used to generate reports.

13.7.1 report_qor

This is used to generate report which consists of timing summary of all the path
groups. This gives overall status of the timing for the design. Example 4 shows the
sample report with multiple timing path groups using report_qor command.

Example 4 qor report

Timing Path Group ‘clk1'
--
Levels of Logic: 6.00
Cri cal Path Length: 3.64
Cri cal Path Slack: -2.64
Cri cal Path Clk Period: 11.32
Total Nega ve Slack: -55.45
No. of Viola ng Paths: 59.00
No. of Hold Viola ons: 1.00
--
Timing Path Group ‘clk2'

Levels of Logic: 10.00
Cri cal Path Length: 3.59
Cri cal Path Slack: -0.29
Cri cal Path Clk Period: 22.65
Total Nega ve Slack: -2.90
No. of Viola ng Paths: 11.00
No. of Hold Viola ons: 0.00

Cell Count

Hierarchical Cell Count: 1736
Hierarchical Port Count: 114870
Leaf Cell Count: 323324

212 13 Design Optimization and Scenarios

13.7.2 report_constraints

This command is used to report the constraints. The following is the report generated
using the report_constraints command.

Example 5 Report constraints

default 0.00 1.00 0.00
--
max_delay/setup 0.00
Constraint Cost
--
max_transi on 0.00 (MET)
max_fanout 0.00 (MET)
max_delay/setup 0.00 (MET)
cri cal_range 0.00 (MET)
min_delay/hold 0.40 (VIOLATED)
max_leakage_power 6.00 (VIOLATED)
max_dynamic_power 14.03 (VIOLATED)
max_area 48.00 (VIOLATED)

Weighted
Group (max_delay/setup) Cost Weight Cost

CLK 0.00 1.00 0.00

13.7.3 report_contraints_all

This command is used to show all the timing and DRC violations. The report
(Example 6) is generated using the report_constraints_all command.

13.7 Report Command 213

Example 6 All constraint report

max_delay/setup (‘clk1' group)
Required Actual

Endpoint Path Delay Path Delay Slack

data[15] 1.00 3.64 f -2.64 (VIOLATED)
data[13] 1.00 3.64 f -2.64 (VIOLATED)
data[11] 1.00 3.63 f -2.63 (VIOLATED)
data[12] 1.00 3.63 f -2.63 (VIOLATED)

Example 7 is the sample script and can be used to constrain the design for
maximum operating frequency of 500 MHz.

Example 7 Sample script for constraining design at 500 MHz

set clock_period 2
/* set the latency */
set latency 0.05
/* set clock skew */
set early_clock_skew [expr $ clock_period/10.0]
set late_clock_skew [expr $ clock_period/20.0]

/* set clock transiƟon */
set clock_transiƟon [expr $ clock_period/100.0]
/* set the external delay */
Set external_delay [expr $ clock_period*0.4]
/* define the clock uncertainty*/
set_clock_uncertainty –setup $ early_clock_skew
set_clock_uncertainty –hold$ late_clock_skew

Name the above script as clock.src, and Source the above script

/* report clock and Ɵming*/
dc_shell> report_Ɵming
dc_shell> report_clock
dc_shell> report_Ɵming
dc_shell> report_constraints –all_violaƟons

/* set the clock */
set clock clk
/* set clock period */

214 13 Design Optimization and Scenarios

Fig. 13.11 Multicycle path

Table 13.4 Multicycle path commands

Command Description

create_clock –name clk_master -period
5 [get_ports clk_master]

To create the master clock of period 5 ns

set_multicycle_path 3 –setup –from [get_pins
UFFO/Q] –to [get_pins UFF1/D]

This sets the multicycle path of 3 cycles

set_multicycle_path 2 –hold –from [get_pins
UFFO/Q] –to [get_pins UFF1/D]

This is used to move the hold check to 2nd
clock cycles and setup is checked at 3rd clock
cycles

13.8 Multicycle Paths

The multicycle paths in the design need to be reported as they are timing exceptions.
The paths can be set so that the timing analyzer can perform the setup and hold check
(Fig. 13.11).

The commands used to set the multicycle path are listed in Table 13.4.
Consider the design which has the complex multipliers, and they need to have

few clock cycle times as their inputs and outputs are registered. Here assumption is
that, we have registered inputs and outputs! In such circumstances, we need to set
the multicycle path (Fig. 13.12).

13.9 Chapter Summary

The following are important points to conclude the chapter

1. Avoid use of the combinational logic as individual block or module.
2. Do not use the glue logic between two modules.
3. Use set_max_area attribute while synthesizing the design.
4. For the optimization of the finite state machines, the FSM compiler is used.
5. The design hierarchy of the design can be broken by using logical flattening of

the design.

13.9 Chapter Summary 215

Fig. 13.12 Complex multipliers as combinational logic in reg-to-reg path

6. If timing is not met with the incremental compilation by using the design
constraints, then it is essential to group the critical timing paths and use the
weight factor to boost the design performance.

Chapter 14
Design for Testability

The logic design and synthesis phase give the lower level of abstraction for the design
which is gate-level netlist. To detect the early faults in the design, theDFT team needs
towork on the strategies during the architecture and at logic levels. The strategiesmay
be having the DFT-friendly RTL and DFT-friendly architecture design. Deepening
on the time and budget requirement for any kind of complex ASIC design, the faults
like stuck at ‘1’, ‘0’, and memory-related faults can be detected.

The chapter discusses about the various faults and strategies used during the DFT.

14.1 What Is Need of DFT?

Let us try to address the question that why we need go for the DFT? Following are
few of the important points to address the actual issues after chip is manufactured.

1. After chip manufacturing in the lot size of few millions, it is not guaranteed that
all the chips will be functionally operated. That is there are few% of chips which
will have the defects.

2. After manufacturing, we will be able to see only the inputs and outputs of the
chip and internal node and pin information is not available, and in such scenarios
if the faults are within the chip, then it is very huge loss to the design houses.

Now, let us try to understand that why faults will remain in the design? Consider
that the design functionality is correct and even the verification results indicate the
functional correctness for the design. Still during routing due to congestions and due
to power routing if the output of cell is shorted to Vdd or Vss, then the cell will have
permanently pull-up or pull-down state which we call as stuck at fault.

DFT and scan insertions are used to detect early faults in the designs.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_14

217

218 14 Design for Testability

So, detect these faults during early stage of the design, the DFT techniques and
strategies are useful. We need to have the test patterns to test the chip and that’s what
we will try to do during the DFT.

14.2 Testing for Faults in the Design

The real scenario is the physical testing is carried out after chip is manufactured.
But if the faults remain in the design, the overall lot is rejected. We carry out the
verification for the design and testing at the device level. This fault can be perceived
during the early stage of designs, and for that, we use the DFT.

The SFT increases the area and cost for the design, but we have the fault coverage
for the chip. Defects can be physical and electrical.

Physical defects are due to silicon defects may be due to defective oxide.

Electrical defects can be short, open, transition or change in the threshold voltage.

Faults in the design: Following can be the types of faults in the design

1. Crosspoint faults: It may be due to the deficiency or due to extra metal.
2. Bridging faults: Input bridging or output bridging faults.
3. Transition Faults: Output is not changing with input change.
4. Delay faults: Due to the gate slow paths.
5. Stuck at fault: The output is stuck at ‘0’ (short) or stuck at ‘1’ (pulled up)

permanently.
6. Pattern-sensitive faults in the memories: Faults in the memories and during

DFT we need to have the various memory fault detection techniques.

14.3 Testing

Effectively we should have the test protocol during test, and it should have

1. Test pattern generation
2. Application of the test patterns
3. Evaluation.

So, the test flow is basically using the four important steps

1. Identification of the faults
2. Test generation
3. Fault simulation
4. Design testability
5. DFT.

14.4 Strategies Used During the DFT 219

14.4 Strategies Used During the DFT

Consider that we have performed the logic synthesis, what exactly we have done is
that we got the gate-level netlist using non-scan cells if the RTL and design archi-
tecture are not DFT friendly. So, the real demand and strategy during ASIC design
is use of the

1. DFT-friendly architecture
2. DFT-friendly RTL.

As during the top- or block-level verification, the faults are not detected, and
better way is to perform the test synthesis using scan methodology to improve the
controllability and observability for the design. Thus, in simple words, we can say
that the scan cells with suitable scan method are useful to detect the faults during the
DFT.

Effectively we will try to replace all or few non-scan sequential cells using the
scan cells, where the scan cells are connected to form the shift register which is
shown in Fig. 14.1.

The important terms which we need to understand are the controllability and
observability for the node.

As shown in Fig. 14.2, the D input of flip-flop is not controllable and observable
and needs to have the provisions so that the testing can be performed. Each node
should be controllable and observable.

Fig. 14.1 Scan chain

Fig. 14.2 Design without controllability and observability

220 14 Design for Testability

Fig. 14.3 Design with each node controllable and observable

Controllability: It is the ability to control the nodes of the sequential circuit by a set
of the inputs. Each node in the sequential circuit should be controllable that means
the test vector should be able to reach to that node during scan mode.

Observability: How efficiently we can observe the change at the nodes indicates the
observability. That is, we should get the desire change of the state at the outputs.

So, during the scan, each node should be controllable and observable. For
scan_enable = 1, the scan_in passes through the D input of each multiplexer, and
it indicates that the design has mux-based scan chain(Fig. 14.3) where each node is
controllable and observable. For more details, refer next few sessions.

14.5 Scan Methods

Depending on the DFT strategies, time and budgeting, the scan methods are chosen.
The scan methods we can use as

1. Full Scan: In this all the sequential cells replaced by scan cells. This has higher
fault coverage.

2. Partial Scan: In this, few of the sequential cells are replaced by scan cell. Fault
coverage using this method is function of the number of sequential cells replaced
by scan cells.

Having strategy to go for the full scan or partial scan is based on the area and timing
constraints. Consider that we have the floating-point engine which has remarkably
high density. For such kind of designs, after placement and routing the congestion
may be more and as the design demands more area the possibility of the stuck at
fault may be on higher side. So, by considering this, we can go for the full scan for
the floating-point unit. Full scan is used to have the higher fault coverage.

14.5 Scan Methods 221

Fig. 14.4 Mux-based scan cell

14.5.1 Mux-Based Scan

As shown in Fig. 14.4, the mux-based scan methodology uses the multiplexer, D
flip-flop and due to simple mechanism it is popular in the industry. Due to use of
the multiplexer at the flip-flop selection input, the design operates in the functional
mode (normal mode) or in the scan mode (test mode). That is the flip-flop input is
controllable.

14.5.2 Boundary Scan

JTAG is popular as the protocol for the boundary scan tests. We have most of the
time JTAG-based test schemes for the FPGAs and ASICs (Fig. 14.5).

14.5.3 Built-In Self-Test (BIST)

The memory BIST (MBIST) and Logic BIST(LBIST) are used to have the built-in
test features in the ASIC.

The MBIST is shown in Fig. 14.6 and useful to incorporate the test features for
the chip.

In this book, we will try to understand the mux-based scan chain.

222 14 Design for Testability

Fig. 14.5 JTAG IEEE 1149.1 standard for boundary scan

Fig. 14.6 Memory BIST

14.6 Scan Insertion 223

Fig. 14.7 Shift register as scan chain

14.6 Scan Insertion

What is the real advantage of the scan chain is that it is easy to pass the test pattern
using the scan chains? If we have 16 inputs, then number of test patterns can be 2
to the power 16 which is extremely high and time consuming without the use of the
scan chain. Scan insertion means use of the scan cells (shift register) as shown in
Fig. 14.7 so that all the design nodes are controllable and observable.

The advantage of the scan chain is that it reduces the overall time during the testing.
During normal mode, the scan cell should behave same as the normal sequential cell.
During the scan, the scan data is shifted serially, and depending on the number of
scan cells used in the chain, it takes those many number of cycles. In Fig. 14.7, each
scan element is mux-based scan cell.

This technique increases the area and introduces the delay in the design. Now,
as scan insertion is performed, how we can test the design? Let us generate the test
pattern and use to test the design.

14.7 Challenges During the DFT

Following are important challenges during the DFT

1. How many number of clocks the design has and how many test clock design
support?

2. What kind of the tester is used and whether it supports waveforms?
3. How many scan chains we need to insert and what is length of each scan chain?
4. If the design has area limitations, then the sharing of the scan ports with the

functional ports is possible or not?
5. What is test vectors size and how many numbers of scan bits for the design?

These challenges need to be addressed.As stated earlier that due to scan insertions,
it significantly affects on the area of the design.

224 14 Design for Testability

Create test clock

Set scan configura on

Check test

Save Design

Read Verilog

Set Top Level Design

Set scan methodology and scan
style

Synthesis of design using the
constraints

Fig. 14.8 DFT flow steps-1

14.8 DFT Flow and Test Compiler Commands

Use the DFT flow shown in Figs. 14.8 and 14.9 to generate test vectors
Table 14.1 describes few of the test compiler commands and their use during DFT

14.9 The Scan Design Rules to Avoid DRC Violations

Few of the design guidelines and scan design rules to avoid DRC violations are listed
in this section.

1. There should not be any combinational loop in design (Fig. 14.10).
Solution: For this design, solution to avoid DRC is break the combinational
loop using the control element.

14.9 The Scan Design Rules to Avoid DRC Violations 225

Perform test analysis

Save data base a er JTAG
synthesis

Create test pa erns

Generate Test vectors

Insert scan

Check test

Use the ATPG

Perform JTAG synthesis and
inser on

Fig. 14.9 DFT flow steps-2

Table 14.1 Important test compiler commands

Command Description

check_test It is used to infer the test protocol to perform the DRC check k by
simulating the test protocol

create_test_clok It is like create_clock command which we have used using DC and used to
specify the waveform and period of the test clock

insert_scan To form the scan chain by replacing the sequential cells using the scan cells

create_test_pattern To create the test patterns and to have the binary vectors, the command is
used

set_test_hold To specify the static values in the primary ports

set_test_dont_fault Used to remove the specific faults. For example, the memory tests are
different as compared to stuck at fault test

2. Avoid use of latches (Fig. 14.11)
Solution: try to have strategy to enable latches during the scan mode.

3. Try to avoid the generated clocks

226 14 Design for Testability

Fig. 14.10 Combinational loop in design

Fig. 14.11 Latch-based designs

4. Use the port-level clock signal to control the internally generated clocks.
5. Avoid the use of internally generated reset signals (Fig. 14.12).

Solution: Use the reset control frommain port to control the asynchronous reset
signals.

6. There should not be gated clocks in the design (Fig. 14.13)
Solution: Enable gated clocks in the scan mode.

7. Have a strategy for not replacing the shift registers during scan.
8. Use the techniques to bypass memories.
9. Avoid the use of positive and negative edge triggered flip-flops in single module

Solution: using the mux-based glue logic invert the clock of negative edge
triggered element during scan mode

10. Avoid mixed edge triggering (Fig. 14.14).

There are various other techniques useful to detect the faults, and for more detail,
readers can refer the DFT books and test compiler manuals.

14.10 Chapter Summary 227

Fig. 14.12 Internally generated reset

Fig. 14.13 Gated clocks in the design

Fig. 14.14 Mix of clock edges

14.10 Chapter Summary

Following are important points to conclude the chapter.

1. DFT is useful to detect early faults in the design.
2. Full scan indicates all the flip-flops in the design are replaced by scan cells.
3. Partial scan indicates that few of the flip-flops are replaced by scan cells.
4. Have the DFT-friendly architecture and RTL.
5. Stuck at faults are the due to net stuck at 0 or stuck at 1.

Chapter 15
Timing Analysis

The speed of the ASIC design is very important criteria, and the constraints for the
block-level and top-level design are specified during the synthesis. These constraints
should meet under any circumstances which indicate the clean design timing. The
timing analysis for the ASIC designs is performed during the logical design with the
following goals

1. To understand where design fails during logic level as the routing information is
not available.

2. Is the design has the timing exceptions?
3. How many timing paths in the design violates and what should be strategies to

fix the setup violations.

During the post-layout STA as the clock tree, network, routing delay information
is available, the STA is performed to fix the timing violations that is setup and hold
time violations. Various strategies are useful to fix the timing violations, and few of
them are discussed in this chapter.

15.1 Introduction

Timing analysis tool uses the design constraint file and the vendor libraries with the
timing information to perform the timing analysis for the design. Timing analysis is
of two types static and dynamic.

Static Timing Analysis (STA): It is performed without use of any set of vectors with
the goal to report the timing paths having the timing violations that are setup and
hold violations. It is vector less approach.

The timing analysis for the ASIC design need to be performed during pre-layout and post-layout
stage.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_15

229

230 15 Timing Analysis

DynamicTimingAnalysis (DTA): TheDTA is performed by use of the set of vectors
for the design. The goal is to fix the set-up and hold time violations for the design.

Role of EDA Tool: The Synopsys PT is powerful timing analysis tool and used to
report the timing paths which have positive and negative slack. If the setup and hold
time for the design is not violated, then the design doesn’t have the timing violation.
Reporting of the timing paths which has timing violation is the real objective, and
we can get the information from the timing report. The timing analysis tool or timing
analyzer is used to report the overall timing information for the design. The team
should have the strategies to fix these timing violations during the pre-layout and
post-layout stage.

15.2 What Are Timing Paths for Design

As discussed in Chap. 6, for any kind of synchronous sequential design, we can have
one or more than one timing path. Consider the design shown in Fig. 15.1.

The design has mainly four timing paths, and they are named as

1. Input to reg path
2. Reg to output path
3. Reg to reg path
4. Input to output path.

To identify the timing paths in the design, the designer should know the start point
and end point.

Start Point: The clock input port of the sequential element (clk), data inputs (primary
ports) of the sequential design is treated as the start point, and the tool algorithm
identifies initially the start points for the design and then end points.

End Point: The end point of the design is the output port of the sequential element
or data input of the sequential element D flip-flop (D).

Fig. 15.1 Synchronous design

15.2 What Are Timing Paths for Design 231

Fig. 15.2 Input to reg path

Fig. 15.3 Reg to output path

15.2.1 Input to Reg Path

It marked as path 1 in the figure, and it is from the input port data_in of the design
to the D input of the sequential element (Fig. 15.2).

15.2.2 Reg to Output Path

It marked as path 2 in the figure, and it is from the clock pin clk2 of the flip-flop to
the data_out1 of the sequential element (Fig. 15.3).

15.2.3 Reg to Reg Path

It marked as path 3 in the figure, and it is from the clock pin clk1 of the flip-flop to
the data input of the D flip-flop that is sequential element 2 (Fig. 15.4).

Fig. 15.4 The reg to reg path

232 15 Timing Analysis

15.2.4 Input to Output Path

It is unconstrained path and also called as combinational path. It is marked as path
4, and it is from data_in of the design to the data_out2 of the design (Fig. 15.5).

15.3 Let Us Specify the Timing Goals

Consider the design shown in Fig. 15.6, and we need to perform the timing analysis
for the single clock domain designs then what we need to do? Effectively, we need
to specify the timing goals that are information about the clock and what is the
maximum operating frequency for the design? What are IO delays and the skew
information to the timing analysis tool?

Block-level STA: Let us use the following steps and try to create the script which
can be used to perform the timing analysis.

1. Specify the clock
2. Specify the clock latency
3. Specify the setup uncertainty
4. Specify the hold uncertainty
5. Specify the input delay
6. Specify the output delay.

Fig. 15.5 Combinational path

Fig. 15.6 Synchronous sequential design

15.3 Let Us Specify the Timing Goals 233

• Clock definition:

For the processor top module, let us define the clock of 500 MHz having 50%
duty cycle using SDC command

create_clock 2.00 name clk [get_ports {clk}]

The above SDC command generates the clock of 500 MHz with the 50% duty
cycle

• Specify clock latency

Let us specify the clock latency. For example, if the clock latency is of 0.25 ns, then
specify using the command ‘set_clock_latency’

set_clock_latency source 0.25 [get_clocks clk]

• Specify early clock catency

The early clock latency can be specified by the following SDC

set_clock_latency source early rise -0.10 [get_clocks clk]

set_clock_latency source early fall -0.05 [get_clocks clk]

• Specify the setup uncertainty

Specify the uncertainty for the setup using command

set_clock_uncertainty setup 0.5 [get_clocks clk]

234 15 Timing Analysis

• Specify the hold uncertainty

Specify the uncertainty for the hold using command

set_clock_uncertainty hold 0.25 [get_clocks clk]

• Specify the minimum input delay

Specify the minimum input delay for the design using ‘set_input_delay’ command

set_input_delay clock clk min 0.1 find (port
data_in)

• Specify the maximum input delay

Specify the minimum input delay for the design using ‘set_input_delay’ command

set_input_delay clock clk max 0.15 find (port
data_in)

• Specify the minimum output delay

Specify theminimum output delay for the design using ‘set_output_delay’ command

set_output_delay clock clk min 0.1 find (port
data_out1)

• Specify the maximum output delay

Specify the maximum output delay for the design using ‘set_output_delay’
command

set_output_delay clock clk max 0.15 find (port
data_out1)

15.4 Timing Reports 235

15.4 Timing Reports

Perform the timing analysis for the design and then use the command report_timing
to get the timing report for the design. The sample timing report is shown in Example
1 and for the design the slack is not met that is the design has timing violations as
setup slack is negative.

Example 1 Sample timing report with negative slack

Startpoint: c_in (input port)
Endpoint: c_out (output port)
Path Group: clk
Path Type: max
Point Incr Path
--
input external delay 0.00 0.00 f
c_in (in) 0.00 0.00 f
U19/Z (AN2) 0.87 0.87 f
U18/Z (EO) 1.13 2.00 f
add_8/U1_1/CO (FA1A) 2.27 4.27 f
add_8/U1_2/CO (FA1A) 1.17 5.45 f
add_8/U1_3/CO (FA1A) 1.17 6.62 f
add_8/U1_4/CO (FA1A) 1.17 7.80 f
add_8/U1_5/CO (FA1A) 1.17 8.97 f
add_8/U1_6/CO (FA1A) 1.17 10.14 f
add_8/U1_7/CO (FA1A) 1.17 11.32 f
U2/Z (EO) 1.06 12.38 f
C_out (out) 0.00 12.38 f
data arrival �me 12.38 f

clock clk (rising edge) 15.00 15.00
clock network delay (ideal) 0.00 15.00
output external delay -3.00 12.00
data required �me 12.00

Data required time 12.00
Data arrival time -12.38
Slack (violated) -0.38

Using the strategies and performance improvement techniques try to fix the setup
violation from the design. These strategies are discussed in the next subsequent
section.

The timing report after fixing for the timing violations is shown in Example 2.

236 15 Timing Analysis

Example 2 Sample timing report with the positive slack

Startpoint: c_in (input port)
Endpoint: c_out (output port)
Path Group: max
Path Type: max
Point Incr Path
--
input external delay 0.00 0.00 f
c_in (in) 0.00 0.00 f
U19/Z (AN2) 0.87 0.87 f
U18/Z (EO) 1.13 2.00 r
add_8/U1_1/CO (FA1A) 2.27 4.27 f
add_8/U1_2/CO (FA1A) 1.17 5.45 f
add_8/U1_3/CO (FA1A) 1.17 6.62 r
add_8/U1_4/CO (FA1A) 1.17 7.80 f
add_8/U1_5/CO (FA1A) 1.19 8.99 r
add_8/U1_6/CO (FA1A) 1.15 10.14 f
add_8/U1_7/CO (FA1A) 0.79 10.93 f
U2/Z (EO) 1.06 11.99 f
C_out (out) 0.00 11.99 f
data arrival �me 11.99 f

clock clk (rising edge) 15.00 15.00
clock network delay (ideal) 0.00 15.00
output external delay -3.00 12.00
data required �me 12.00

Data required time 12.00
Data arrival time -11.99
Slack (met) 0.01

As shown in the timing report, the slack is positive and the design doesn’t have
the setup violation.

15.5 Strategies to Fix Timing Violations

If the design has the setup and hold violations, then it is nightmare for the STA team
to fix these violations. For any kind of ASIC design during the STA, we need to
report all the paths having violations, and we should be able to have the strategies
in place to fix these timing violations. Consider the design of the processor and we
have to perform the block-level and top-level STA! (Fig. 15.7).

15.5 Strategies to Fix Timing Violations 237

IO
Interface

Serial
IO

ALU

Internal
Memory

Floa ng
Point

Engine

Pointers
and

Counters

Ports
and

Interface s

Interrupt
Controller

Processor Configura on

Clock Management and Timing Control

Fig. 15.7 Processor top-level architecture

The following are few of the issues and violations we can experience during the
STA

1. The block-level timing met but the top-level timing has issue?
2. There are lot of timing paths in the floating point engine which has setup

violations.
3. There are few timing paths for the general-purpose processing engines where we

have data very fast have hold violations.
4. Due to large density multipliers the timing exceptions in the design.
5. At the asynchronous sequential boundaries the timing violations due to

metastable output from synchronizer.

The following are few of the techniques useful to fix the timing violations

1. Use tool-based directives: Few of the tool-based directives to balance the delays
for the register to register path can be useful during optimization phase. The
register balancing can be useful to balance the delays by introducing the latency
in the design.

2. Resynthesize the design with goal of performance improvement: Use the
pipelining architecture, register balancing, and duplication techniques to fix the
timing violations. If not able to fix for all the timing violations, then use the
architecture and RTL tweaks.

238 15 Timing Analysis

3. Architecture and micro-architecture Tweaks: To fix the timing violations, the
final option is to work on the architecture tweaks by incorporating the parallelism
or pipelining. But, this has additional impact as the design cycle elongates.

Most of the time, during the STA, we may experience the scenario that the block-
level constraintsmeet and design doesn’t have timing violation. Butwhile performing
the timing analysis for the top-level design, the design has many timing violation.
This may be due to the top-level integration and the improper design partitioning.
In such scenario, it affects on the various timing paths as the delay introduced has
significant impact on the design. The following can be good strategy to fix the timing
violations in such circumstances

1. Try to have the closure look at the design partitioning and were the additional
delays introduces.

2. Try to set the false path at the asynchronous multiple clock boundaries to disable
timing.

3. Try to find the late arrival signals to fix the setup violations.
4. Try to find the early arrival signal and have the strategies to fix the hold violations.
5. Try to check for the timing exceptions and try to specify the timing exceptions

in the Tcl script.

15.5.1 Fixing Setup Violations in the Design

The setup violations are due to the data or the control signal changes during the
setup window. The reason being the logic density is higher, and it adds the signifi-
cant amount of delay and data changes during the setup window prior to arrival of
active edge of the clock. The following are few techniques used to fix the setup time
violations:

1. Split the combinational delays by retaining design functionality
2. Use the encoding methods to avoid the cascade logic
3. Have a strategy to fix for the late arrival signals
4. Use register balancing or pipelining.

15.5.1.1 Duplicate the Logic

Consider we have the reg to reg path and have the timing setup violation. Then,
the reason is the large amount of delays which has incurred due to combinational
logic. In such scenario, use the logic duplication concepts to duplicate the logic. This
has impact on the area, but due to parallelism, we will be able to fix for the setup
violations (Fig. 15.8).

15.5 Strategies to Fix Timing Violations 239

Fig. 15.8 Combo logic with large delay

Fig. 15.9 Cascade or priority logic

15.5.1.2 The Priority Versus Multiplex Encoding Methods

The popular encoding methods are priority encoding and multiplexed encoding.
Consider the continuous assignment to have the glue logic (Fig. 15.9).

assign y_out=a_in && b_in && c_in && d_in && e_in && f_in && g_in
&& h_in;

The assign construct infers the priority logic where the a_in has highest priority
over the other inputs. Due to cascade AND gates, the glue logic has more delay and
slower, and hence, there are chances of setup violations. By using the parallel logic
that is by structuring and grouping the terms, the delay can be reduced. If each AND
gate has 0.25 ns delay, then cascade stage has delay of 1.75 ns.

As shown in Fig. 15.10, if we use the parallel logic or mux kind of logic which
has many parallel inputs, then the overall glue logic delay is just three stage delay
which is 0.75 ns.

Use the assign

y_out= ((a_in && b_in) && (c_in && d_in)) && ((e_in &&
f_in) && (g_in && h_in);

15.5.1.3 Late Arrival Signals

The setup time is violated due to late arrival signals and the design fails. Consider
the design shown in Fig. 15.11.

240 15 Timing Analysis

Fig. 15.10 Multiplexed or parallel logic

Fig. 15.11 Logic which has late arrival signal sel_in

As shown in the design, the glue logic is used to select from one of the inputs
data_in_1 or data_in_2 and both arrives at the same time. But the sel_in input arrives
late. As y_out is used as input at D flip-flop, the design has setup violation. That is
data changes during the setup window.

The setup violation can be fixed using some strategy of moving the design blocks
at the input side and using the logic duplication. As sel_in is late arrival time and
it is the reason for the setup violation, we will duplicate the combinational logic
(combo_logic) at the inputs of multiplexer so that margin of the combinational logic
delay can be used to sample the late arrival signal and in turn to fix the setup violation.
Figure 15.12 describes the strategy used using the RTL design tweak.

15.5 Strategies to Fix Timing Violations 241

Fig. 15.12 Logic duplication which has late arrival signal sel_in

15.5.1.4 Register Balancing

To fix the set up time and to improve the design performance, register balancing is
one of the powerful techniques. Consider the operating frequency for the design as
500MHz; that is, clock time period is 2 ns. If reg to reg path has more combinational
delay, then the data arrival is slow and the flip-flop goes into the metastable state and
hence has the setup violation (Fig. 15.13).

So, use the pipelining or register balancing by splitting the combinational logic
as shown in Fig. 15.14. Care should be taken that the strategy and tweaks should not
effect on the design functionality.

Fig. 15.13 Logic without register balancing

Fig. 15.14 Logic with register balancing

242 15 Timing Analysis

Fig. 15.15 Logic which has early arrival of data

Fig. 15.16 Logic to fix the hold violation by using data buffers

15.5.2 Hold Violation Fix

Hold time violation occurs in the design if the data at the D input of flip-flop changes
very fast. For example, consider the input to reg path shown in Fig. 15.15; if combi-
national logic delay is small, then there is chance of the data toggle during the hold
window after arrival of active edge of the clock. This leads to the hold violation, and
design will not meet the timing constraints.

To fix the hold violations, try to insert the buffers in the data path but take care that
it should not have impact on the setup. Setup slack should be positive. The strategy
is described in Fig. 15.16.

15.5.3 Timing Exceptions

There are two main timing exceptions and are named as false paths and multicycle
paths; for more details, refer Chaps. 13 and 14. These timing exceptions need to be
specified during the timing analysis.

15.6 Chapter Summary

The following are few of the points to conclude the chapter

1. STA is static timing analysis and is non-vectored approach to find the timing
violations.

15.6 Chapter Summary 243

2. DTA is vectored approach and is dynamic timing analysis.
3. DuringSTA, the objective is not to verify the functionality, but themajor objective

is to report the timing violations and fix them.
4. If setup or hold time is violated then design has timing violation.
5. The multicycle paths and false paths are the timing exceptions in the design and

need to be specified.
6. The setup violations are due to late arrival of the data and can be fixed using the

RTL, synthesis and architecture tweaks.
7. Hold violations are due to fast arrival of the data and can be fixed by having the

data path analysis that is by inserting buffers in the data path.

Chapter 16
Physical Design

Thephysical design of the complexASIC is time consuming andneeds lot of attention
to avoid the congestion and to improve the performance of the chip. During various
stages, the common issues faced are due to

1. Congestion
2. Routing issues and routing delays
3. Issues during the distribution of the clock and clock skew
4. Issues due to the net delays and parasitic
5. Meeting of the chip-level constraints such as timing and maximum frequency
6. Issues due to noise and derate of the timing
7. Design rule check fails
8. LVS issues due to the routing.

All these issues need to be addressed during the physical design, and the strategies
need to be developed to get the layout and GDSII with required timing and power.

The chapter discusses the physical design flow steps in details and strategies
during the physical design.

16.1 Physical Design Flow

As discussed in Chap. 2, the gate-level netlist is available from the logic design
flow. The netlist with chip constraints and required libraries are used as inputs during
the physical design flow.

The physical design starts with the floor planning that is planning of the design
mapping, and the goal is that there should not be congestion while routing of the
design and the logic blocks or functional blocks should meet the aspect ratio. The
better floor planning is required to have the better area, speed, and power and will

Physical design is also called as backend design, and the objective is to get the GDSII.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_16

245

246 16 Physical Design

be useful to avoid the routing congestion. The power planning stage is used to plan
for the power rings (VDD and VSS) and power straps depending on the power
requirements.

After the power planning is done, the clock tree synthesis needs to be performed
to balance the clock skew and to distribute the clock to the various functional blocks
of the design. The clock tree can be H tree, X tree, balanced tree and discussed in
this chapter.

The placement and routing are done to have the layout of the chip. The layout
will have the routing delays, and many times the STA needs to be performed to find
and fix the timing violations.

The layout of chip needs to be checked to verify the

(a) Foundry rules that is DRC
(b) LVS that is checking of the layout versus the schematic, and the intent is to

verify the layout with the gate-level netlist.

If all the design rules are met and there are no any issues in the LVS, the team
needs to perform the signoff STA. The reason being the after the layout, the design
will not meet the required timing and frequency and may require the modification or
tweaking at the various stages. The flow is iterative, and objective is to achieve the
chip-level constraints.

After the signoff STA, the GDSII is generated. The GDSII stands for the Generic
or Geometric Data Structure Information Interchange and describes the layout of the
design with the connectivity.

The foundry uses the GDSII to manufacture the chip. It is also treated as tapeout
delivered to foundry! (Fig. 16.1).

16.2 Foundation and Important Terms

Initially, the area estimation for the chip is unknown and with initial floorplan we
can estimate the rough area utilization. The area optimization is especially important
during the ASIC design, and the utilization is basically the percentage of the area that
has been used in the chip. Important terms which we need to consider are following!

(a) Chip-Level Utilization: It is the ratio of the area of standard cells, macros and
the pad cells with respect to area of chip

(Area (Standard Cells) + Area (Macros)

+ Area (Pad Cells))/Area (chip)

(b) Floorplan Utilization: It is defined as the ratio of the area of standard cells,
macros, and the pad cells to the area of the chip minus the area of the sub
floorplan

16.2 Foundation and Important Terms 247

FloorPlanning

Power Planning

CTS

Place and Route

LVS

DRC

Signoff STA

GDSII

CHIP

Fig. 16.1 Physical design flow

248 16 Physical Design

Table 16.1 List of various formats

Format Description

DSPF: Detailed standard parasitic format It contains the RC information of the nets

RSPF: Reduced standard parasitic format It consists of the information about the RC delays
in terms of a pi model

SDF: Standard delay format The delays of the standard cells and net delays

SPEF: Standard parasitic exchange format It contains the parasitic information

LEF: Library exchange format: It contains the logic cell information

DEF: Design exchange format It is used to describe the physical information of
netlist

EDIF: Electronic design interchange format It is used to describe schematics and layout

GDSII: Generic data structures library This file is used by foundry to manufacture the
ASIC

PDEF: Physical design exchange format It consists of the clustering information

((Area (Standard Cells) + Area (Macros)

+ Area (Pad Cells))/(Area (Chip))−Area (sub floorplan))

(c) Cell Row Utilization: It is defined as the ratio of the area of the standard cells
to the area of the chip minus the area of the macros and area of blockages

Area (Standard Cells)/(Area (Chip) − Area (Macro)−Area (Region Blockages))

Following are the important formats which we should know (Table 16.1).

16.3 Floor Planning and Power Planning

What is the information which is described by the netlist which is available after
post-synthesis? The answer of this important question can be used to have the better
floor plan!

The netlist which is available during logic design flow after the pre-layout STA is
input to the floor planning tool consider as IC compiler. The netlist gives information
about the

1. Various design and functional blocks
2. Macros
3. Memories
4. Interconnection between these block.

As the physical design team uses the netlist which is logical representation of the
design with the goal to get the physical representation of the design. So, the design
should have the better floor plan to get the design description. In simple words, the

16.3 Floor Planning and Power Planning 249

floor plan is the step in the physical design flow to get the physical description of the
design.

What should be the strategies for the best floor plan?

To get the best floor plan, the objective of the team is to

1. Use of the minimum area
2. Strategy to have floor plan so the congestion can be very minimum
3. The delays due to routing can be minimized due to better floor plan.

So, during the floor planning we will perform the following important tasks

1. The chip area and size estimation
2. Strategy to arrange various functional blocks on the silicon
3. Strategy for the pin assignment
4. Planning for the IOs.

As per as ASICs are concern, the better floor planning is useful to improve the
design performance by achieving the required timing and area. Most of the time
during floor planning, we need to consider about the power planning and clock tree
synthesis. But for easy understanding, the two different steps are documented as

1. Floor planning
2. Power planning
3. CTS.

Floorplan needs use of the important elements!

For any kind of ASIC, the important elements are

• Standard cells: For the specific technology node
• IO cells: To establish communication with the chip.
• Macros: Memories such as SRAM, DRAM (Fig. 16.2).

16.4 Power Planning

Depending on the power requirements, the VDD and VSS power rings are created
across the floor plan.

Power Rings: Carries VDD and VSS around the chip
Power Stripes: Carries VDD and VSS from rings across the chip
Power Rails: Connect VDD and VSS to the standard cell VDD and VSS

(Fig. 16.3).

250 16 Physical Design

Fig. 16.2 Floor planning the blocks relative to each other. Image Courtesy Andrew Kahng, UCSD

Fig. 16.3 Power planning [1]

16.5 Clock Tree Synthesis 251

16.5 Clock Tree Synthesis

Using the Tcl-based script, we will try to work on the clock tree synthesis.
Different clocking strategies are used to distribute the clock with the uniform

clock skew, and few of the clock trees are

1. Clock Tree: to distribute the clock across the chip and to have the uniform skew
(Fig. 16.4)

2. H Tree: To distribute the clock across the chip with uniform skew the another
method is H tree synthesis (Fig. 16.5).

Use the following strategies while using the physical design tool

1. Check for the various tool-based optimization steps and enable them
2. Use the Tcl script to perform the CTS
3. Use the clock optimization. For example, using IC compiler, we can use

clock_opt−e f f or t hi gh

4. Save the cell and report the following

(a) Placement utilization
(b) Quality of report (QOR).
(c) Report timing that is setup and hold

5. Perform the post-optimization after CTS: For any kind of the setup and hold
violations, perform the following

(a) Fix the setup time
(b) Clock optimization
(c) Clock sizing
(d) Hold time fix
(e) Report the timing.

Fig. 16.4 Clock tree

252 16 Physical Design

Fig. 16.5 H tree

16.6 Place and Route

During the floorplan, we do not have accurate information of the placing of the
standard cells. During the placement, the physical locations of all the standard cells
are defined. After the placement, the accurate estimation of capacitive load we can
get at each standard cell.

The tool uses the placement algorithm to place the standard cells and set the space
aside to have the better routing.

Following are important objectives during placement.

1. Use of the area constraints to have the location strategies so that the logic
congestion can be minimum.

2. Have the less wire delays that is net delays so that the design performance can
meet.

3. The placement should be useful to have better routing during the routing stage
and there should not be cell overlaps.

4. Tool uses the algorithm which is using the timing and area constraints to have
the global and detail placement.

Few commands which are useful during placement are
place_opt used to insert buffers to avoid the DRC violations.
Using the IC compiler, use the
set_buffer_opt_strategy -effort low to have the buffering strategy

16.6 Place and Route 253

Fig. 16.6 Standard cells arranged on site rows. Image Courtesy Andrew Kahng, UCSD

There are other commandswhich are useful to tacklewith the area and congestion,
and these are

place_opt –congestion
place_opt -area_recovery -effort low
This can be used with various options as high, medium.
Used to report the placement utilization
report_placement_utilization
use report_qor, report_timing to report the quality of reports and timing after

placement (Figs. 16.6 and 16.7).

16.7 Routing

After the placement stage, perform the global and detail routing and this is accom-
plished by using the physical design tool. Routing is basically connection of
the different functional blocks of the design to establish the connectivity and
communication (Fig. 16.8).

1. Global routing: It is used to perform the connections between all the blocks
using small length nets and objective is to

(a) minimize the length of interconnect
(b) minimize the critical path
(c) To determines the assignments for each interconnect

254 16 Physical Design

Fig. 16.7 Placed design. Image courtesy Andrew Kahng, UCSD

Fig. 16.8 Global and local routing

16.7 Routing 255

(d) Minimizing the congestion as it leads to the DRC issues.

The routing algorithm decides about all above parameters while performing the
routing.

2. Detailed Routing: This is basically to establish the real connections between all
the nets. This step is useful to create actual via and metal connections. The main
objectives of detailed routing algorithm are to

(a) Minimize the area
(b) Minimize the wire length
(c) Optimize delays in the critical paths.

During the final routing with the width, layer the exact location of the intercon-
nection are decided.

Use the command route_opt to have the routing.
Now try to find the placement utilization using the command

report_placement_utilization.
Report the timing and qor using the report_timing, report_qor and try to fix the

timing issues.
To fix the issues, use the incremental route and optimize design commands

(Fig. 16.9).

16.8 Back Annotation

The parasitic extraction that is finding out the R and C for each net is performed and
use of the actual data to have the wire load model. Back annotate the information in
the newwire load model to DC and to floorplan, P&R tool during the re-optimization
of the design.

16.9 Signoff STA and Layout

Perform the timing analysis after the back annotation; if design does not meet the
timing, then perform the resynthesis using the data available in the wire load model
(back annotated data). For the smaller timing violations, use the re-optimization
design strategies. Perform the above steps from the synthesis to P and R with the
new wire load model data unless and until timing doesn’t met.

Still the design has timing violation; then, reoptimize design and use the in-place
optimization.

1. Optimization Strategies

Use the strategies like reoptimize design and in place optimization if the design does
not meet the timing goals.

256 16 Physical Design

Fig. 16.9 Routed design. Image Courtesy Andrew Kahng, UCSD

The re-optimization uses the physical clustering and its information to meet the
goals. If is similar like compile incremental but compile incremental works on the
logical clusters.

After the re-optimization if the design doesn’t meet the timing, then perform
the in place optimization (IPO); it is the technique where the critical path cells can
be swapped in other non-critical sub paths. The technique is useful to meet the
constraints to have the layout with clean timing (Fig. 16.10).

For more details about the physical design and various algorithms, refer the
Physical design and the IC compiler books.

16.10 Chapter Summary 257

Fig. 16.10 FRICO ASIC, 350 nm technology

16.10 Chapter Summary

Following are important points to conclude the chapter.

1. The netlist which is available during logic design flow after the pre-layout STA
is input to the floor planning tool.

2. During the placement, the physical locations of all the standard cells are defined.
3. After the placement stage, perform the global and detail routing, and this is

accomplished by using the physical design tool
4. The parasitic extraction that is finding out the R and C for each net is performed

and use of the actual data to have the wire load models.
5. Signoff STA is performed after bank annotation phase as RC delays are available.

258 16 Physical Design

Reference

http://vlsibyjim.blogspot.com/2015/03/power-planning.html

Chapter 17
Case Study: Processor ASIC
Implementation

The design of the processors from the functional specifications to the GDSII is time
consuming as we need to tackle about the issues like data integrity for the multiple
clock domains, processor configuration management and the architecture tweaks for
the better performance. Even during the physical design stage, we need to consider
about the floor plan strategies so that we can have room for the better routing. The
major issue is due to large number of resources required to perform the floating-point
operations and the timing requirements. If the block-level constraints are met, then
also it is impossible to meet all the chip-level constraints during the signoff STA.

The chapter discusses about the various strategies during the RTL to GDSII of
the processor designs.

17.1 Functional Understanding

If we consider the today’s ASIC design, then the complexity of design is very high,
and for the faster product launch, we may need to think about the use of processor
IPs. There are many high density processor cores which are available in the market
and used during the ASIC design cycle. The processor cores are used to perform
various operations on the signed, unsigned, and floating-point numbers. They may
have the parallelism and multistage pipelining features to boost the overall processor
performance.

The objective of this chapter is to have discussion on how to transform the
functional specifications into logic design and how to get the GDSII!

Processor cores are extensively used in the ASIC designs.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_17

259

260 17 Case Study: Processor ASIC Implementation

Let us consider the 32-bit processor which has following specifications.

1. It should perform the arithmetic operations such as addition, subtraction,
multiplication, division, and modulus on signed, unsigned, and floating-point
numbers.

2. It should perform the logical operations on 32-bit binary numbers.
3. It should perform the data transfer and branching operations.
4. It should perform the shifting and rotate operations.
5. The external interfaces can be

(a) IO interfaces
(b) Serial IO
(c) High-speed interfaces.

6. It should have the internal memory storage of 64 KB
7. The processor should have the interrupt controller.
8. The processor has two clock domains and should use clk1 and clk2, respectively.

Consider that these specifications are extracted from the requirements and let us
try to use these to have better architecture and micro-architecture.

17.2 Strategies During Architecture Design

Let us use the functional specification understanding to finalize the architecture of
the processor. Use the following strategies to have the better architecture

1. Multiple Clock domain groups: The design is multiple clock domains, and we
should have strategies to deploy the synchronizers. Following can be thought
during the architecture design. Let us try to have the understanding of the
functionality in these clock domains.

Clock domain 1: It is controlled by the clk1, and the functional blocks of this clock
domain are

1. ALU
2. Internal memory
3. Interrupt controller
4. Pointers and counters
5. Serial IO
6. IO Interfaces.

17.2 Strategies During Architecture Design 261

Fig. 17.1 Processor engine

ALU

Floa ng
Point

Engine

In the architecture, clock domain 1 block is indicated by the white color boxes.

Clock domain 2: It is controlled by the clk2, and the functional blocks of this clock
domain are

1. Floating-Point Unit.
2. High-speed interfaces.

In the architecture, clock domain 2 blocks are indicated by the yellow filled color.

2. Processor Engine

As stated in the specification extraction document, the processor core performs
various operations on the signed and unsigned number and floating-point numbers,
so the better strategy is to have the dedicated block for the general-purpose operations
using ALU and floating-point operations (Fig. 17.1).

ALU: Performs the general-purpose operations on the signed, unsigned numbers

Floating-point Engine: Used to perform the operations on the floating-point
numbers.

Then, let us try to understand the memory requirements and use the dedicated
memory block of 64 KB may have partitioning according to the address ranges so
that various functional units can perform the read and write operations.

3. Memories: To store the internal data, the processor needs to have the internal
memory and can be shared between the general-purpose ALU and the floating-
point engine. As we have the multiple clock domain design, then better way is to
have the separate memory for the general-purpose processor and floating-point
engine.
With reference to the specification, the 64 KBmemory is divided into two blocks
of 16 KB and 48 KB, respectively (Fig. 17.2).

4. High-Speed Interfaces: To exchange the data from the external memory and IO
after performing the floating-point operations, the architecture needs to have the
high-speed interfaces. These high-speed interfaces need to be designed to have
lower latency and minimum interconnect delays.

262 17 Case Study: Processor ASIC Implementation

Fig. 17.2 Memory
partitioning

Internal Memory

48KByte

16KByte

Fig. 17.3 Pointers and
counters

Pointers and Counters

PC

SP

32-bit
Counter

and
�mer

5. Pointers and Counters: During the general-purpose processing of the data, the
result may need to be stored in the reserved area of memory, so the design may
need the stack pointer, and to fetch the instruction and the data from the external
memory, the design needs to have the program counter. The stack and program
counter are 16-bit for the architecture (Fig. 17.3).

The 32-bit counter and timer are used as dedicated timer and counter during the
counting applications.

6. IO and Communication Blocks: To communicate with the external devices
such as serial and parallel, the processor architecture should have the dedicated
blocks. These blocks are

• IO Interfaces: For the 32-bit data transfer dedicated high-speed IOs to
exchange the 32-bit of the data between the IO devices and processor.

• Serial IO: The serial devices can communicate with the general-purpose
processors using the serial IOs.

7. Interrupt Controller: The architecture provides the dedicated block to process
the edge- and level-sensitive interrupts. The interrupt controller can halt the
current execution for the valid interrupt (Fig. 17.4).

17.3 Micro-architecture Strategies 263

Pointers
and

Counters

Interrupt
Controller

Internal
Memory

IO
Interface Serial

IO

Processor Configura on Management

ALU

Floa ng
Point

Engine

High
Speed
Interfaces

Fig. 17.4 Processor architecture

17.3 Micro-architecture Strategies

Asdiscussed inChap. 99, themicro-architecture is the sub-block level; representation
and the following strategies we can use to have the better micro-architecture

1. Try to have the rough initial estimation for the functional density of each block.
2. Depending on the functional requirements, try to have the sub-block-level

representation. For example, the ALU we can indicate as the (Fig. 17.5)
3. For each functional block, sketch and document the sub-block-level representa-

tion.
4. Identify the interfaces for each sub-block and try to document them with timing

information.
5. If the architecture demands use of the IPs, then the functional and interfaces can

be documented with the timing information.
6. Multiple clock domain functional units try to describe as separate groups.

264 17 Case Study: Processor ASIC Implementation

Arithme c
Unit

Logic Unit

Selec o
Logic

n

Fig. 17.5 ALU partitioning

Let us try to have the understanding of the micro-architecture for the 32-bit ALU.
The ALU performs the operations as addition, subtraction, multiplication, division,
and modulus using the arithmetic unit and logical operations such as and, or, xor, not
using the logic unit. So, the micro-architecture has two sub-blocks that is arithmetic
unit and logic unit. The selection logic at output is used to select from one of the
outputs. The sub-block-level representation of ALU is shown in Fig. 17.6.

The interface information with the associated blocks of the processor is docu-
mented in Table 17.1.

The tweaks recommended during the micro-architecture design that the external
interfaces need to have registered inputs and outputs so the following micro-
architecture for the ALU is better option (Fig. 17.7).

The micro-architecture for the ALU has separate data and control path and has
registered inputs and registered outputs.

Fig. 17.6 Micro-architecture for ALU

17.3 Micro-architecture Strategies 265

Table 17.1 IO interfaces for ALU

Name of signal Direction Width Description

a_in Input 32-bit Input to the ALU

b_in Input 32-bit Input to the ALU

opcode_in Input 8-bit Input to ALU to carry opcode

result_out Output 72-bit To carry result and flag information

overflow_out Output 1-bit To indicate the result overflow that is if result is greater than
64-bits, then flag = 1

Fig. 17.7 Micro-architecture tweaks

By considering the above strategies, the micro-architecture is created for other
functional blocks, and the sub-block-level representation is shown in Fig. 17.8.

17.4 Strategies During RTL Design and Verification

Following strategies were used during the RTL design and verification of the
processor

1. Partitioning of the block-level design to improve the overall area and speed of
the design.

2. Use of the case constructs instead of if-else to avoid the priority logic.
3. Have the separate FSM controllers to have the better timing control.
4. Have the separate modules for the control and data path synchronizers.

266 17 Case Study: Processor ASIC Implementation

Interrupt
Controller

ALU

Floa ng
Point

Engine

IO
Interface

High
Speed
Interfaces

Serial
IO

Processor Configura on Management

Clock Management and Timing Control

Internal Memory

48KByte

16KByte

Pointers and
Counters

PC

SP

32-
bit

Counter
and
mer

Fig. 17.8 Processor micro-architecture

5. Having the use of the resource sharing and pipelining using synthesizable
constructs.

During the RTL verification, the following strategies were used

1. Have the better block-level and top-level verification plan and architecture.
2. Documenting the corner cases and the test cases for the block-level designs and

for the top-level design. For example, the multiplication by 0, division by 0,
overflow and the flag generation checks.

3. Use of automatic testbenches during the verification.
4. Checking for the coverage: Functional, code, toggle, etc.
5. Monitoring and documenting the results for the block- and top-level design.

17.5 The Sample Script Used During Synthesis 267

17.5 The Sample Script Used During Synthesis

The sample script can be used to constrain the design for operating frequency of
500 MHz

/* set the clock */
set clock clk
/* set clock period */
set clock_period 2
/* set the latency */
set latency 0.05
/* set clock skew */
set early_clock_skew [expr $ clock_period/10.0]
set late_clock_skew [expr $ clock_period/20.0]

/* set clock transi�on */
set clock_transi�on [expr $ clock_period/100.0]
/* set the external delay */
Set external_delay [expr $ clock_period*0.4]
/* define the clock uncertainty*/
set_clock_uncertainty –setup $ early_clock_skew
set_clock_uncertainty –hold$ late_clock_skew

Name the above script as clock.src, and Source the above script

/* report clock and �ming*/
dc_shell> report_�ming
dc_shell> report_clock
dc_shell> report_�ming
dc_shell> report_constraints –all_viola�ons

17.6 Synthesis Issues and Fixes

Following are few of the scenarios which we can understand the fix during the
synthesis and optimization.

1. AreaOptimization: TheSynopsysDCwill not be able to optimize the hierarchical
designs, and hence, for the ALU design, the area is not optimized.
Solution: Try to tweak the micro-architecture and in turn the RTL by having
strategy to perform the logical operations using the arithmetic resources. By
using this strategy, the single block (ALU) is suitable and useful to perform the
arithmetic and logical operations.

268 17 Case Study: Processor ASIC Implementation

Fig. 17.9 Micro-architecture tweak to fix late arrival signals

2. Late arrival inputs opcode: From the decoding engine, the opcode is arriving
late and impacts on the timing. The setup time violates for the micro-architecture
(Fig. 17.7)
Solution: Use the strategy to push the common resources toward output side
(ALU pushed toward output side) and use the combinational logic at the input
side to improve the data path synthesis. This tweak at themicro-architecture level
is useful to eliminate the setup time violation during the block-level synthesis.

As shown in Fig. 17.9, the opcode_in is pushed at the input side so that we can
have the clean reg to reg path to eliminate the setup violation.

17.7 Pre-layout STA Issues

The following are few of the issues which need to understand and fix during the
pre-layout STA.

1. Issue in the General-purpose processor timing: Able to meet the timing for the
general-purpose processor but still chance of the performance improvement as
setup slack is very high.
Solution: Improve the design performance using the pipelined architecture.
Tweak the micro-architecture using the strategy shown in Fig. 17.10
This strategy increases the area and introduces latency of few clocks to get the
result but improves the design performance.

2. Floating-Point Engine Constraint violation: During the block-level synthesis
of the processor, the block-level constraints are met but the real scenario which

17.7 Pre-layout STA Issues 269

Fig. 17.10 Pipelining stage architecture

I faced during the top-level synthesis for the operating frequency of 500 MHz.
The general-purpose processor timing was met that is setup slack was positive,
but for the floating-point engine, the setup slack was negative and had the timing
violation in the design.
Solution: The floating-point engine consists of many multipliers to perform
the floating-point operations and was consuming the longest delay between the
register. The critical path for the designwas almost around 3.3 ns, and to eliminate
the setup time violations, the following strategies were used:

1. Register balancing and optimization
2. Splitting of the combinational design by introducing the latency of one clock.
3. Tweaking of the RTL using the logic duplication.

The strategies were helpful to have the speed improvement and to meet the setup
slack.

3. Timing Exceptions: The floating-point engine design has lot of timing issues and
not able to eliminate them during synthesis and optimization.
Solution: The reason is it uses the large density multipliers, and hence, it is
obvious that the design has the timing exceptions like

• Multicycle path
• False path.

Notify these exceptions and then re-compile with the optimization goal.

17.8 Physical Design Issues

Consider that after the P and R design has the timing violations.

Solution: Use the strategies like reoptimize design and in place optimization if the
design does not meet the timing goals.

The re-optimization uses the physical clustering and its information to meet
the desired goals. It is similar like compile incremental but compile incremental
works on the logical clusters.

270 17 Case Study: Processor ASIC Implementation

After the re-optimization, if the design doesn’t meet the timing then perform
the in place optimization (IPO), it is the technique where the critical path cells can
be swapped in other non-critical sub-paths. The technique is useful to meet the
constraints and to have the layout with clean timing.

17.9 Chapter Summary

Following are the important points to conclude the chapter

1. If the architecture demands use of the IPs, then the functional and interfaces can
be documented with the timing information.

2. For multiple clock domain designs try to have separate clock groups.
3. If design uses the large density multipliers, then it is obvious that the design has

the timing exceptions like multicycle path.
4. Few issues during the pre-layout STA are block-level functionality timing

meeting but not at top level.
5. To fix the setup violation, use the register balancing and optimization, splitting

of the combinational design by introducing the latency of one clock, tweaking
of the RTL using the logic duplication.

Chapter 18
Programmable ASIC

ModernASICdesigns are very complex and can consist of themillion or billion gates.
Before ASIC goes through the manufacturing process, it is essential to prototype the
design to check for the functional correctness of the design. Even at the filed how
the design behaves that need to be verified at the system level, hence it is essential to
understand about the FPGA that is programmableASIC flow and theASIC synthesis.
The following sections are useful to understand the FPGA synthesis and design using
FPGA.

18.1 Programmable ASIC

Tohave the lowestNREcost and to prototype theASICs, themultiple FPGAarchitec-
tures are useful. The prototype team uses the complex FPGAs to test the functionality
and the connectivity of the different design blocks. The FPGA layout at fabric level
is shown in Fig. 18.1, and it has various functional blocks such as

FPGA is programmable ASIC, and multiple FPGAs are used to prototype the complex ASICs.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_18

271

272 18 Programmable ASIC

Fig. 18.1 FPGA fabric and layout

1. CLB (slice registers, LUTs, Mux)
2. Clock managers
3. IOBs
4. Multipliers
5. DSP blocks
6. Block RAMs.

18.1 Programmable ASIC 273

Even the modern FPGAs have the processor cores, high-speed interfaces, and the
memory controllers to access and process the larger amount of the data.

18.2 Design Flow

FPGA design flow can be also treated as programmable ASIC flow and described in
Fig. 18.2.

The important steps are

1. Design planning
2. RTL design and verification
3. Synthesis
4. Design implementation: It consists of the following steps

(a) Logic functionality mapping
(b) Place and rout
(c) SDF-based verification
(d) Signoff STA.

5. Device programming.

Few of the important FPGA blocks are shown in Fig. 18.3: FPGA architecture.
The modern FPGA architecture is complex and consists of few of the important
blocks as follows:

1. Configurable Logic Block (CLB): The array of CLBs is useful to map the logic
using the LUTs, slice registers, andmultiplexers to have the desired functionality.

2. IOBlocks: At the periphery of the FPGAs, the IOblocks are used to communicate
with the external world and the logic on the FPGA fabric.

3. SwitchBoxes: The switch boxes are used to establish connectivity of the different
CLBs.

4. DSP Blocks: The dedicated blocks used as programmable resource for the
complex DSP functionality.

5. Multipliers: The dedicated multipliers on fabric to perform the multiplication.
6. Processor block: The processor core which can be configured to perform the

processing of the data.

274 18 Programmable ASIC

Market Survey

Specification
Extraction

Design Pl anning

RTL Design and
Verification

FPGA Synthesis

Design
Implementation

Device Programming

Fig. 18.2 FPGA design flow

18.3 Modern FPGA Fabric and Elements

The modern FPGAs have the complex architectures and useful to prototype the
ASICs. Single FPGA may or may not accommodate the entire ASIC functionality
so the prototype team needs to plan the ASIC prototype using the multiple FPGAs.

18.3 Modern FPGA Fabric and Elements 275

Fig. 18.3 FPGA architecture

As discussed in above section, the FPGA consists of the programmable blocks. The
section discusses the programmable blocks for the modern FPGAs. The important
FPGA blocks residing on the FPGA fabric are shown in Fig. 18.4.

Few of the blocks useful during prototype are discussed in this section

1. Configurable Logic Block (CLB): The CLB consists of the slice register and
the LUTs with associated logic such as adder with carry chain and multiplexers.
The CLB for the Xilinx FPGA which consists of the six inputs LUTs and slice
registers with the associated logic is shown in Fig. 18.5.

In the simple way, the CLB logic can be easily interpreted as the logic blockwhich
can be programmed to have the combinational and sequential design outputs. For
example, consider (Example 1).

276 18 Programmable ASIC

CLB

IOB
Block
RAM

Memory
Controller Clock

Managers

Multipliers
DSP

BLOCK
High

Speed
Interfaces

Ethernet PCI
Bus

Interface Test and
Debug

Fig. 18.4 Important FPGA vendor-specific blocks

Example 1 RTL design using Verilog

//
module fpga_design(input clk, a_in,b_in,sel_in, output q2_out);
reg q1_out;
always @ (posedge clk)
begin
q1_out <= q_out;
end
assign q_out = a_in ^ b_in;
assign q2_out = (sel_in) ? q1_out : q_out;

endmodule

18.3 Modern FPGA Fabric and Elements 277

Fig. 18.5 CLB architecture

The synthesis if theExample 1:RTLdesign usingVerilog infers the programmable
logic residing within the CLB using the slice register and LUT (Fig. 18.6).

2. Input/Output Block (IO Block): The IOs are around the periphery of the FPGA
and the IO blocks are used to establish communication between the logic within
the FPGA with the external world.

The IO block structure which is configured as an input to the FPGA is shown in
Fig. 18.7, and as shown the data flow is from the PAD to the FPGA logic.

IO block which is configured as an output is shown in Fig. 18.8, and the data flows
from the FPGA logic blocks to the PAD. Even IOs can be configured as bidirectional
for the data transfer between the FPGA logic and external world.

278 18 Programmable ASIC

Fig. 18.6 Use of LUTs and slice register during synthesis

Fig. 18.7 Input block to the FPGA

Fig. 18.8 Output block

18.3 Modern FPGA Fabric and Elements 279

3. Block RAM: The FPGAs have the block memories to store the data and called
as block RAM.

4. Multipliers: The FPGA architecture is vendor-specific, and few of the FPGAs
have the dedicated multipliers.

5. DSPBlocks: The complex DSP functionality can be implemented using the DSP
blocks, and the multiple DSP blocks reside on the FPGA fabric.

6. ClockManagers: The clock managers are used to distribute the clock within the
FPGA fabric with the uniform delay.

7. Controllers: The modern FPGAs have the high-speed memory controllers and
processors.

8. Interfaces: Modern FPGA architectures have the provision to establish the
connectivity using the high-speed interfaces.

18.4 RTL Design and Verification

The RTL design for the complex logic needs the better architecture and partitioning
of the design. During the RTL design phase, the following strategies can be helpful

1. Have the detail understanding of the architecture and micro-architecture.
2. Have the partitioning strategies which can be useful to code the functionality

using modular approach.
3. Use the design guidelines and have better understanding of FPGA architecture.
4. Havebetter understandingof theASIC toFPGAconversions such as gated clocks,

designs with clock enables.
5. Deploy the synchronizers for the multiple clock-level designs.
6. Use the separate modules for the FSM controllers and work on the strategies for

the better data and control path synthesis.

Consider the design which uses the gray counter, the RTL description is shown
in the Example 2 and the RTL schematic is shown in Fig. 18.9.

280 18 Programmable ASIC

Fig. 18.9 RTL schematic for 4-bit gray counter

Example 2 RTL description for 4-bit gray counter

//

module gray_counter (parameter data_size =4)
 (input clk;
input reset_n;
input increment;
output reg [data_size-1:0] gray;
);
parameter data_size =4;
reg [data_size-1:0] gray_next, binary_next, binary;
integer m;
always@(posedge clk or negedge reset_n)
if (~reset_n)
gray <= 4'b0000;
else

18.4 RTL Design and Verification 281

gray <= gray_next;

always@(*)
begin
for (m=0; m < data_size; m=m+1)
begin

binary[m] =^ (gray >> m);
binary_next = binary + increment;
gray_next = (binary_next >>1) ^ binary_next;

end
end
endmodule

The technology schematic for the design is shown in Fig. 18.10.
The testbench for thegray counter is describedusing thenon-synthesizableVerilog

constructs and is shown in Example 3.

Fig. 18.10 Technology schematic for 4-bit gray counter

282 18 Programmable ASIC

Example 3 Testbench of 4-bit gray counter

//

module test_gray;

// Inputs
reg clk;
reg increment;
reg reset_n;

// Outputs
wire [3:0] gray;

// Instantiate the Unit Under Test (UUT)
gray_counter uut (

.clk(clk),

.increment(increment),

.reset_n(reset_n),
 .gray(gray)

);
always #10 clk=~clk;

initial begin
// Initialize Inputs
clk = 0;

 increment = 0;
reset_n = 0;

// Wait 100 ns for global reset to finish
#100;

increment =1;
reset_n=1;

end

endmodule

18.4 RTL Design and Verification 283

Fig. 18.11 Simulation result of 4-bit gray counter

The simulation waveform is shown in Fig. 18.11 as the counter generates the gray
code on every positive edge of the clock during the inactive reset.

18.5 FPGA Synthesis

The FPGA uses the CLBs, IOBs, BRAMs, and other blocks to implement the design
functionality.

As discussed in Chap. 1 the ASIC uses the standard cells and macros to infer the
logic.

For moderate gate count designs which uses few logic gates, the RTL schematic
may look similar but practically the FPGA synthesis and ASIC synthesis differ a lot
due to the use of the resources.

18.5.1 Arithmetic Operators and Synthesis

Let us consider the use of the arithmetic operators such as+ (Addition),− (Subtrac-
tion), * (Multiplication),/(Division) and %(modulus) shown in the RTL then for
ASIC or FPGA synthesis the logic is inferred using the standard cells and LUTs,
respectively.

The RTL for the arithmetic unit is described in the Example 4.

Example 4 Use of arithmetic operators

///

module arithmetic_operator_synthesis (input [1:0] a_in, b_in,
output reg [2:0] y1_out,
output reg [1:0] y2_out,
output reg [3:0] y3_out,
output reg [1:0] y4_out,
output reg [1:0] y5_out);

284 18 Programmable ASIC

always @ *
begin

 y1_out = a_in + b_in; // addition operator
y2_out = a_in -b_in; // Subtraction operator

 y3_out = a_in * b_in; // multiplication operator
 y4_out = a_in /b_in; // division operator
 y5_out = a_in % b_in; // modulus operator

end
endmodule
//

The RTL schematic for the design is shown in Fig. 18.12 and has the arith-
metic resources to perform the desired operation. All the operations are performed
in parallel to generate the parallel outputs.

18.5.2 Relational Operator and Synthesis

If we need to have combo logic to compute the less than and greater than, then we
will use the relational operators.

The RTL described in the Example 5 uses the, < (less than), ≤ (less than equal
to), > (greater than), ≥ (greater than equal to) operator, and the RTL: Schematic is
shown in Fig. 18.13.

18.5 FPGA Synthesis 285

Fig. 18.12 Synthesis result for Example 4

Example 5 Use of the relational operators

286 18 Programmable ASIC

Fig. 18.13 RTL synthesis for the Example 5

18.5 FPGA Synthesis 287

///

module relational_operator (input [1:0] a_in, b_in,
output reg y1_out,
output reg y2_out,
output reg y3_out,
output reg y4_out
);

always @ *
begin

 y1_out = a_in < b_in; // less than operator
y2_out = a_in <= b_in; // less than equal to operator

 y3_out = a_in > b_in; // greater than operator
y4_out = a_in >= b_in; // greater than and equal to operator
end

endmodule
///

18.5.3 Equality Operator Synthesis

Most of the time we need to compare the strings during ASIC or FPGA designs, and
in such scenarios we can use the equality operators.

The RTL description shown in the Example 6 uses the ==(equality),! =
(inequality) operator a,nd the RTL schematic is shown in Fig. 18.14

Fig. 18.14 RTL schematic for Example 6

288 18 Programmable ASIC

Example 6 Use of equality operator

///
module equality_operator

(

input [1:0] a_in, b_in,
output reg y1_out,
output reg y2_out

);

always @ *
begin

 y1_out = (a_in == b_in); //equality operator
 y2_out = (a_in != b_in); // inequality operator

end
endmodule
///

18.6 Design at Fabric Level

For the FPGA, the physical design consists of the following steps.

1. Design Implementation:

(a) Logic functionality mapping
(b) Place and rout
(c) SDF-based verification
(d) Signoff STA.

2. Device Programming

For the complex designs, the following issues need to be fixed

1. The trimming of the larger number of blocks during the place and route stage:
Try to check for the redundant logic and tweak the RTL.

2. The timing exceptions due to multicycle and false paths in design: Specify the
timing exceptions during STA.

3. The design is not fitting on the fabric and resource requirement is more that
100%: Try to optimize for the area by enabling the tool directives. If still the
design doesn’t fit on the FPGA fabric, then use the area optimization techniques
that are, try to tweak the RTL and architecture of the design.

4. Timing fails: Try to optimize with the timing goals or use the performance
improvement techniques such as register balancing and optimization.

18.6 Design at Fabric Level 289

Fig. 18.15 FPGA fabric

The logic residing on the FPGA fabric which we can treat as the layout of FPGA
is shown in Fig. 18.15.

The placement and routing are performed to actually place the logic on the FPGA
fabric, and the design snapshot with various clusters is shown in Fig. 18.15. The
routing is shown by the green color wires, and the length of the wires to route the
design is chosen using the routing algorithm to have the least delays (Fig. 18.16).

After the final routing for the design, the SDF-based verification is carried out,
and the signoff STA is performed. For any timing issues, the design needs to optimize
or it is essential to perform the tweaks at the RTL and architecture level. The flow is
iterative and time consuming for the complex designs.

After meeting all the timing goals, the FPGA device is programmed, and system’s
tests and verification at the device level can be performed.

290 18 Programmable ASIC

Fig. 18.16 Place and route
snapshot for FPGA

18.7 Chapter Summary

Following are few of the important points to conclude the chapter.

1. FPGA is field programmable gate array and called as programmable ASIC.
2. The FPGA important block is configurable logic block which consists of the

LUTs and slice registers, and the architecture of FPGA is vendor-specific.
3. During the logic design, the better architecture of the design and partitioning can

result into the better performance for the design.

18.7 Chapter Summary 291

4. The FPGAsynthesis differs from theASIC synthesis. TheASICuses the standard
cells and macros, whereas FPGA uses the LUTs and slice registers with the
dedicated blocks and IOs.

5. At the fabric level, the following important steps are used to implement the design

(a) Logic functionality mapping
(b) Place and rout
(c) SDF-based verification
(d) Signoff STA.

Chapter 19
Prototyping Design

Already we have discussed about the ASIC designs and the design flow and as the
design is ready after the logical synthesis and initial floor planning, the prototyping
phase can kick off. The better way to prototype design is using the multiple FPGA
partitioning and by using few RTL tweaks to have the ASIC to FPGA conversions.
The following are few of the points which we need to think during prototype

1. Strategies for the overall prototype and the best FPGA architecture
2. Prototype and system testing plans
3. STA and the interconnect delays incurred during actual testing.

Effectively we try to mimic the ASIC functionality into the actual design and will
try to use the FPGA EDA tools to check and test for the desired FPGA functionality.
Using the clock speed of the ASIC may not be feasible during the prototype, and
the FPGA-based system can be carried out at the lower clock frequency to check for
where design fails. If design meets the functionality and constraints for the multiple
FPGA prototypes, it almost indicates the design functionality of the ASIC is correct
and the design can go through the manufacturing phase.

The following sections discuss about all this in detail and useful to understand
the prototyping strategies, issues, and the concepts.

19.1 FPGAs for Prototyping

Consider the design of the 32-bit processor which we have discussed in Chap. 17.
Let us try to refer the micro-architecture of the design which is shown in Fig. 19.1.

To check for the functional correctness of the design, ASIC goes through protoyping phase.

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_19

293

294 19 Prototyping Design

Interrupt
Controller

ALU

Floating
Point

Engine

IO
Interface

High
Speed
Interfaces

Serial
IO

Processor Configuration Management

Clock Management and Timing Control

Internal
Memory

48KByte

16KByte

Pointers and
Counters

PC

SP

32-
bit
Co
un
ter
an

Fig. 19.1 Micro-architecture design

Let us try to identify the goals with reference to following points

1. Prototyping plan
2. Design complexity and the constraints associated for the design
3. The external interfaces and IO requirements and pin multiplexing strategies
4. The suitable FPGA architecture with the IO interfaces
5. Number of FPGAs required to prototype the design
6. The suitable functional and timing proven IPs for the design
7. Documentation on the ASIC to FPGA conversions
8. System testing plan and the documentation.

19.1 FPGAs for Prototyping 295

If the RTL description is designed from the scratch for the FPGA-based designs,
then the ASIC to FPGA conversion is not required as the synthesis is performed to
have the use of the FPGA functional blocks such as CLBs, IOBs, and BRAM.

Now, try to understand the ASIC prototyping, as the logic design and synthesis,
pre-layout STA phase is over the prototype team has information about the overall
logic density and the IO requirements. Although the constraints associated with the
FPGA interfaces are different as compared to ASICs, the prototype strategies can be
finalized to port the ASIC RTL using the multiple FPGAs.

The following section discusses about few of the strategies and their use during
the prototyping.

19.2 Synthesis Strategies During Prototyping

AsASICs are faster than the FPGA and logic density is larger, the design partitioning
for the million gate SOC is the most important task. The design can be partitioned
before synthesis or after synthesis. The prototype team needs to choose the correct
approach for partitioning the design.

The truth is design may not run at the SOC speed and it is essential to modify the
SOC design into FPGA equivalent resources. So, during the synthesis, it is essential
to have clarity about the architecture or initial floor plan, constraints and FPGA
resources. Prototyping flow should achieve the better performance as compared to
SOC emulation, and for that, the major milestone is synthesis. There are multiple
ways in which the synthesis can be performed to achieve the better results. The
following are few of the approaches used during the synthesis.

19.2.1 Fast Synthesis for Initial Resource Estimation

If we chose the fast synthesis, then it can be useful for understanding the initial or
rough device utilization and the performance at the initial stage. But in such type of
synthesis, the full optimization is ignored by the synthesis tool. The reason being
the runtime is almost around two or three times. But this can be useful to save the
weeks/days time for the complex designs and for the initial design partitioning.

19.2.2 Incremental Synthesis

The incremental synthesis is the better approach for the complex SOC designs. The
incremental efforts of P andR tool canbeused efficientlywhile synthesizing the larger
density designs. The SOC design sub-blocks or trees can be synthesized separately
according to the version changes.

296 19 Prototyping Design

For example, consider the SOC design having 100 sub-blocks and the RTL
changes are incorporated in only ten sub-blocks; then during increment synthesis,
the tool can synthesize the RTL for the ten sub-blocks. This reduces overall efforts
and time during the synthesis phase.

That is if the sub-block or tree architecture is not changed, then synthesis tool
ignores this and preserves the previous version. This reduces the weeks/days time
for the complex SOC synthesis.

The beauty of the EDA tool like Synopsys Certify [1] or the XILINX P and R tool
[2] is that they preserve the hierarchy, previous version logic, placement, constraints,
mapping as it is during the re-synthesis if the RTL is not modified. It reduces the
turnaround time.

If small portion of the design is modified, then due to incremental synthesis, the
design runtime reduces, and P and R tool can use the synthesis results.

The prototype team should be able to use the features of the synthesis and P and
R tool. The combined use of these features can reduce the significant amount of time
during prototyping. Most important point is that the P and R runtime is always larger
than the synthesis runtime for the complex designs. So, the strategy should be use
the synthesis and P and R tools in the incremental flow (Fig. 19.2).

The Xilinx EDA tool backend flow is shown in Fig. 19.3.

HDL or core
generator

Synthesis Design

Define Partition

Implement Design

Fig. 19.2 Design synthesis and implementation

19.3 Constraints During FPGA Synthesis 297

Fig. 19.3 Xilinx backend tool flow

19.3 Constraints During FPGA Synthesis

The Section discusses about the use of tool commands during the FPGA synthesis.
The FPGA synthesis commands are listed in Table 19.1.

The following are important steps to be performed during the synthesis using
Synopsys DC FPGA

1. Read the Verilog design file.
2. Set the design constraints.
3. Insert the pads.
4. Perform the design synthesis.
5. Execute the replace_fpga command.
6. Write the database.

The sample script for the FPGA synthesis of top_processor_core is shown below

298 19 Prototyping Design

Table 19.1 Commands used during FPGA synthesis

Command Description

set_port_is_pad <port_list> <design_list> The command is useful to place attributes on the
list of ports specified in command. Attribute allows
dc to map IO pads

set_pad_type <type of pad> <port_list> The command is used to choose the type of the
pads to which design is to be mapped

insert_pad The command is used to insert the pads

replace_fpga The command is used to convert the synthesizable
FPGA database to the schematic. Instead of
visualizing the schematic having CLBs, IOBs, the
schematic consists of gate

--
dc_shell > read –format verilog top_processor_core.v
dc_shell> create_clock clock –name clk –period 10
dc_shell> set_input_delay 2 –max – < list all the input ports using the same
command and required delay attribute>
dc_shell > set_port_is_pad
dc_shell> insert_pad
dc_shell> compile –map_effort high
dc_shell> report_timing
dc_shell> report_area
dc_shell> report_cell

The timing report consists of the timing path information and the data required
time, data arrival time, slack.

Area report gives the list of following:

--
Number of ports
Number of cells
Number of nets
Number of references
Combinational area
Non-combinational area
Net Interconnect area
Total cell area
Total area
--

19.3 Constraints During FPGA Synthesis 299

To get the information about the FPGA resources, the following command can be
used

dc_shell > report_fpga–one_level
It gives the following information about the use of FPGA resources

--
Function Generators:
Number of CLB
Number of ports
Number of clock pads
Number of IOB
Number of flip flops
Number of tri state buffers
Total number of cells
--

To write the netlist in the database format, use the command
dc_shell > write-format db–hierarchy–output top_procesor_core.db
The synthesizable database (netlist) and timing information can be used by the

place and route tool.

19.4 Important Considerations and Tweaks

The following are few of the important considerations useful during the prototyping
to get the FPGA equivalent logic.

1. Gated Clock instantiation: The gated clock structure for the SOC may not be
matched with the FPGA equivalent structure, and hence, it is essential to modify
the RTL to infer the gated clock structure (Figs. 19.4 and 19.5).

Fig. 19.4 Gated clock used for the design

300 19 Prototyping Design

Fig. 19.5 FPGA equivalent clock gating

2. SOC IPs: Most of the time IPs with the RTL design is not available and hence it
is essential to have the FPGA equivalent of such IPs.

3. ASIC/SOC memories: The memory structure for the ASIC or SOC is not iden-
tical with the FPGAmemories, and hence, it requires the modification during the
prototype stage.

4. Top-level pads: As FPGA tool doesn’t understand about the instantiation of the
pad, hence it is essential to modify them during the prototype. As it does not
handle the IO PAD in the RTL and infers the FPGA PAD, so it needs to leave
the pads out with dangling connections inactive or to the top-level boundary. For
the prototype, replace each IO pad instance with synthesizable model of FPGA
equivalent.
The model should have the logical connections at the RTL level and that can
be done by writing small piece of code in the RTL. For the efficient prototype,
prepare the SOC pad library. The basic FPGA IO cell is as shown in Fig. 19.6.

5. IPs in the netlist forms: The netlist form may not be the FPGA equivalent and
hence needs modification during prototype.

6. Leaf cells: Leaf cells from the ASIC librarymay not be understood by the FPGA,
and hence, it needs modifications.

7. Test circuitry: The built-in self test (BIST) and other test or debug circuit need
to have the FPGA equivalent and hence need the modification.

8. Unused inputs: For the unused input pins, it is essential to tweak the RTL.

PAD
Output
Register

Register
tri State
control

Input
Register

Fig. 19.6 FPGA basic IO cell

19.4 Important Considerations and Tweaks 301

9. Generated clocks: During prototype to achieve the better performance, the
generated clocks need to be modified by its FPGA equivalent.

19.5 IO Pad Synthesis for FPGA

As FPGA tools do not understand about the instantiation of the pads, hence it is
essential to modify them during the prototype. As it does not handle the IO pad in
the RTL and infers the FPGA pad, so it needs to leave the pads out with dangling
connections inactive or to the top-level boundary. For the prototype, replace each IO
pad instance with synthesizable model of FPGA equivalent.

The model should have the logical connections at the RTL level and that can be
done by writing small piece of code in the RTL. For the efficient prototype, prepare
the SOC pad library. The basic IO cell for the FPGA is shown in Fig. 19.6.

Use the following commands using SynopsysDC. Formore information on FPGA
synthesis, refer Sect. 18.2 (Fig. 19.7).

dc_shell > set_port_is_pad
dc_shell> insert_pad
dc_shell> compile –map_effort high

19.6 Prototyping Tools

The ASIC prototyping is achieved by using industry standard leading tools like
Design Compiler FPGA. The EDA tool is used to have ASIC prototyping for high
denisty FPGA designs. The design compiler is industries leading EDA tool and used
to get best optimal synthesis result and best timing for the FPGA synthesis. The basic
flow for the ASIC prototyping is shown in the (Fig. 19.7)., and in the subsequent
chapters, we will discuss about the ASIC prototyping using multiple FPGAs and
how we can achieve the efficient ASIC prototype (Fig. 19.7).

19.7 Chapter Summary

Following are few of the important points to conclude the chapter

1. Multiple FPGAs are used to prototype the design.
2. The incremental synthesis is the better approach for the complex SOC designs.
3. The ASIC prototyping is achieved by using industry standard leading tools like

Design Compiler FPGA.

302 19 Prototyping Design

Fig. 19.7 ASIC prototype flow

4. The gated clock structure for the ASIC may not be matched with the FPGA
equivalent structure, and hence, it is essential to modify the RTL to infer the
gated clock structure.

5. As FPGA tools do not understand about the instantiation of the pads, hence it is
essential to modify them during the prototype.

Chapter 20
Case Study: IP Design and Development

As the ASIC design functionality is complex, the design need to have the use of
various IPs. The important considerations while design of IPs or use of IPs is based
on the IO requirements and functional and timing requirements for the design. In
such circumstances, it is helpful to the design team to have the understanding of the
various kinds of available IPs. The next subsequent section discusses the IP design
and development strategies and their reuse during the design.

20.1 IP Design and Development

Consider the design of the SOC which consists of the various functional blocks such
as the processors, floating point engine, H.264 encoder, DDR controller, etc. For the
quick turnaround of the design general industry practice is to have the use of IPs.
Consider that the DDR memory controller IP is available in the market then instead
of design of the memory controller from scratch, the industry practices are used for
the available functional and timing-proven IPs during the design.

IPs are available in the following format, and the prototype team needs to use the
IPs during the design cycle at the different stages.

1. RTL Source code of IP: Open source code or the license version of the IP source
code is available. The source code using VHDL or Verilog is available.

2. Soft IP: This type of IP cores is sometime encrypted versions, and they need to
have some processing during the design and reuse.

3. IPs in the netlist form: They are available in the form of the pre-synthesized
netlist of the SOC components or Synopsys GTECH.

4. Physical IP: They are also called as hard IPs, and they are pre-laid-out by the
foundry.

Most of the time during ASIC design we need to use functional and timing proven IPs!

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0_20

303

304 20 Case Study: IP Design and Development

5. Encrypted Source Code: The RTL is protected with the encrypted key and must
be decrypted to get the RTL source.

20.2 What We Consider During the IP Selection

The following are important points which we consider during the selection of IPs

1. Functional requirements and the features supported by the available IPs.
2. The IOs and other high-speed interfaces for the IP.
3. Format in which IPs are available. That is whether the IP tweaking to boost the

performance is possible or not?
4. What kind of the configuration environment IP is having.
5. What are the debug and test features available in the IP.
6. What kind of documentation is provided by the IP vendor?
7. What are the electrical characteristics for which IP can be used?
8. What is the environment in which IP can be used?
9. Different clocks and power domain for the IPs.
10. What are the timing characteristics and IO delays for the IPs?

By considering this, we will try to select the IP.

20.3 Strategies Useful During the IP Design

Following are few of the strategies which can be useful during the design of IP.
Although IP design and verification is time consuming phase if the design demands
the new functional implementations, then it is mandatory to have the IP design and
development. For example, new standard is available in the market and in such
scenarios the design houses may work on the IP design and development.

1. IP Design and reuse

Most of the SOC design team always uses the third-party functional and timing-
proven IPs. During the design of the complex ASICs for quick turnaround, the IPs
can be reused. Use of hard or soft IPs can be used during the design and prototype
phase and the reuse is helpful to achieve.

1. Focus on the design of additional supported features for quick turnaround.
2. Reduces the time to market.
3. Design team will be able to spend more time to have low-power and high-speed

designs.
4. Design team will be able to play around using the multiple clock domain and

multiple power domain designs.

20.3 Strategies Useful During the IP Design 305

5. The physical design challenges such as fixing the timing violations needs
more time during the physical design. So if IPs are used, this time is reduced
significantly.

2. Hardware–Software co-design

This is also called as design partitioning; the design has to be partitioned into hard-
ware and software. The important point of consideration is while partitioning the
design; how parallel execution needs to be incorporated in the design? In the present
scenario as SOCs are complex, the functionality can be implemented using the paral-
lelism in the design which in turn can improve the design performance. The complex
computational task or algorithms need to be partitioned during the design parti-
tioning phase. Most of the complex computational blocks need to be implemented
using hardware. Design partitioning is important and decisive phase to define what
need to be implemented using software? And what need to be implemented using
hardware?

For example, consider the design of video decoders which need multiple frame
support. The video decoder can be efficiently implemented using hardware, and even
the parallelism can be incorporated for the few decoder features. The high computa-
tional DSP functional blocks which need filters like FFT, FIR and IIR or high-speed
multipliers can be effectively and efficiently implemented using hardware.

Let us consider the scenario of protocol implementation, most of the protocols like
Ethernet, USB, and AHB can be efficiently implemented using hardware software
co-design. These algorithms should be functional and timing proven. This can have
advantage to overcome and to reduce latency in the design. For most of the protocol
implementation, it is essential to consider.

The major challenge in the hardware software design portioning is the analysis
of throughput and power requirements. For example, consider the scenario in SOC
design where fixed length packets need to be transferred over the fixed time interval.
If the design is implemented by using hardware, then care needs to be taken such
that there should be minimum interaction between the hardware and software. To
minimize the interaction between hardware and software, the strategy can be used
by using FIFO buffers and timers.

3. Interface details and timing requirements

For every IP, it is essential to have the functional and timing-proven bus interfaces.
In most of the applications, Advanced High Speed Bus protocols are used. These
protocols need to be validated for the functional and timing correctness of the design.
IO interfaces need to be targeted for the high-speed data transfer. There are many
different kinds of IO interfaces used in SOC designs. These IOs can be general-
purpose, differential IOs, and high-speed IOs.

Reset clock requirements:

Clock distribution network is used to provide the uniform clock skew to all the
registers in the SOCs. The clocking policy plays the crucial role in overall design
performance. The uniform clock skewcan be achieved by using the suitable clock tree

306 20 Case Study: IP Design and Development

by using clock tree synthesis. Use of single clock structure or multiple clock domain
structure needs to be decided at the architecture level. Also the uses of synchronous
or asynchronous logic need to be defined at the architecture level. Reset can be
asynchronous or synchronous and need to be defined at the architecture phase of
SOC.

4. EDA tool and license requirements

Choose the required necessary EDA tools and licenses for FPGA prototyping of a
SOC and for ASIC porting. The most industry standard tools are

Simulator: Questasim, VCS
Synthesis: Synpilfy pro and Synopsys DC
STA: prime time (Synopsys PT).

5. Developing the required prototyping platform:

For SOC and IP validation, use the necessary prototyping and development plat-
form. Prototyping platform can consist of use of multiple FPGA boards to realize
and validate SOCs, IP required, DSP functionality required, memories and general-
purpose processors required. The availability of desired prototyping boards with the
necessary interfaces to realize SOC and use of debug or testing setup.

Most of the SOCs are tested by using the test setup consisting of available EDA
tools and logic analyzers. At the start of the SOC design cycle, architect analyzes
the design and functional requirements and according to the requirement of speed
and estimation of gate count the prototyping platform can be designed. Here the
overall important factors are time to market, budget allocation, and design time
requirements. If DSP capabilities are available in FPGA, then it is wise to implement
the DSP functionality on FPGAs.

6. Developing the test plan:

For complex gate count SOCs, the necessary test cases need to be developed with the
required test vectors. The features can be extracted using top-level functional specifi-
cations, and the required test cases can be documented in the test plan document. The
test vectors developed can have significant impact on the quality of the verification
to achieve the coverage goals. The test cases can be documented as basic, corner,
and the random test cases. The constrained random verification with the required
coverage goals can be achieved by using the required necessary test cases.

7. Developing the verification environment:

Use the verification languages like Verilog and high-level verification languages like
System Verilog or System C; for early detection of bugs and to achieve the coverage
goals. The verification planning to improve the overall design quality by capturing the
bugs during early design cycle is always crucial in the large gate count SOC designs.
The overall objective is to achieve the required and designed functionality in less

20.3 Strategies Useful During the IP Design 307

time. The verification environment needs to be built to achieve the coverage goals.
The verification architecture can have the necessary bus functional models and the
drivers, monitors and scoreboards for robust checking of the design specifications.
The overall verification planning and creation of environment is with goal to achieve
the automation to minimize the time requirement to complete the functional checks
in the lesser amount of time duration.

20.4 Prototyping Using Multiple FPGA

Consider the SOCdesignwhich has the processor for the general-purpose computing,
DDR3 memory controller and video encoder and decoder IP. If the design need is
of 2, 00,000 logic gates, then the design cannot fit on the single FPGA of Artix-7.
In such circumstances, we need to use the design partitioning to target the design
using multiple FPGAs. For most of the SOCs, we need to target the prototype using
the multiple FPGA architecture. The FPGAs can be connected using ring- or star-
type topology. The Fig. 20.1 describes logic on the multiple FPGAs using the cable
connectivity (Fig. 20.1).

Following are few of the important recommendations useful during the prototype
using multiple FPGAs.

1. Have better understating of the design: Try to understand the analog and digital
functionality for the design and partition the design into the analog and digital
design domains. Use the partitioning tools to have the better results. The auto-
matic partitioning tools can be used to have the better partitioning of the design
across sequential boundaries.

2. Analog functionality and the additional interfaces:AsFPGAis goodcandidate
to realize the digital design, but practically the design has both analog and digital

Fig. 20.1 Multiple FPGA during SOC prototype

308 20 Case Study: IP Design and Development

blocks. So try to choose the additional daughter boards to interface the ADC and
DAC.

3. Efficient use of the resources: Try to have strategy while performing the parti-
tioning to allow the EDA tool to have maximum 70% of the FPGA resources.
This will allow the prototype team to add the BIST and debug logic during the
board bring-up phase.

4. Requirement of IOs and pin multiplexing: The speed of IO is an impor-
tant factor which decides the overall performance of the prototype. There are
additional multiplexing strategies need to be deployed for the multiple FPGA
designs.

5. Clocking strategies: Depending on the requirement of the star, ring topology, it
is essential to think about the clocking strategies for the multiple FPGA designs.
The clock skew and other board delays need to be thought during the debug and
the test phase.

6. IO interfaces: At the SOC architecture level, the decision should be made about
the prototype features requirement. Always it is better choice to consider about
the IO speed, IO voltage, bandwidth, clock and reset network, external interfaces
while designing the prototype using the single or multiple FPGAs!

7. FPGA connectivity: The prototype team needs to think about the ring-, star-, or
mix-type connectivity for the prototype using the multiple FPGA. Following are
few of the highlights

(a) Ring-type connectivity between FPGAs

In such type of arrangement, the multiple FPGAs are connected to form the ring.
In such type of connectivity, it increases the overall path delay. As the signal is

passing through the FPGA, the equivalent prototype logic can resemble to priority
logic. This type of the connectivity has slower speed as compared to other type of
boards.

If we try to visualize the ring-type connections, then at high level we can think
about the pin connection using such type of inter FPGA connectivity. The wastage
of IOs cannot be limited in such kind of the connectivity. The FPGAs are at the down
side; IOs will be wasted, and it is additional overhead to the board designer and board
layout team to connect these IOs to high impedance states.

(b) Star connectivity:

This type of inter FPGA connectivity is faster as compared to the ring arrange-
ment due to the direct connections with the other FPGA. For the better prototype
performance, use the high-speed interconnects between the FPGAs and configure
the unused pins as high impendence state.

c. Mixed connectivity:

During the board design and layout, we may use the mix of the ring-type connections
and star connectivity. Such type of connectivity can have the moderate performance.

20.4 Prototyping Using Multiple FPGA 309

The boards available in the market from vendors have fixed connectivity and may
not be suitable during prototyping as they don’t match the specifications and require-
ments. Under such circumstances depending on the design complexity, it is better to
choose interface connectivity for better prototype performance.

20.5 H.264. Encoder IP Design and Development

Let us try to have strategies to develop the IP for the H.264 encoder design. The
architecture is shown in Fig. 20.2: H.264 Encoder Architecture.

The followingwe need to think during themicro-architecture design for the H.264
encoder.

20.5.1 Features and Micro-architecture Design Strategies

1. Video formats supported: Various video formats supported by the encoder that
is SD size, HD size, etc.

Input
Frame
Buffers

Output
Frame
Buffers

Prediction

DB Filter

Storage

Storage

Q&T

Inverse
Q&T

Top Level Configuration Management

Clock Management and Timing Control

Fig. 20.2 H.264 encoder architecture

310 20 Case Study: IP Design and Development

2. Maximum frame size: What is the maximum frame size for example 1920 ×
1080 predictive frame?

3. Timing requirements: The number of framers per second supported for the
processing and the overall clocking requirements.

4. Processing of video data: Strategies while processing of the video data that is
hardware and software co-design, configuration management.

5. Design partitioning: To have the better understanding have the strategies for the
manual partitioning of the design at.

(a) Functional level
(b) Interface level
(c) Across multiple clock levels
(d) Across multiple power domains

6. Functional understanding and interfaces: For better design outcome have the
understanding of the

(a) Block-level functionality of prediction (intra, inter), quantization, transform,
inverse quantization, inverse transform and deblocking filter blocks.

(b) Sketch the micro-architecture representation for each functional block
(c) Document the interfaces for each block

7. External interfaces: Have the better strategy to have the external high-speed
interfaces and interfaces for the communication.

8. Memory requirements: Have the better strategies to have the memory require-
ments and buffering mechanism for the design.

9. EDA tools required: Have the documentation on the budget requirement for the
EDA tools and debug test setup tools.

20.5.2 Strategies During RTL Design and Verification

Use the following strategies during the RTL design and verification of the H.264
encoder

1. RTL Design: Following we can think during the RTL design phase of H.264
encoder.

(a) Use the modular approach and code the RTL for each functional block. Try
to eliminate the combinational logic hierarchy for the better optimization.

(b) Have the test synthesis strategies placed during the RTL design for each
module that will give the DFT-friendly architecture for the H.264 encoder.

(c) Have the multiple clock domains partitioning and groping and then specify
the hierarchy for the design. Code the RTL for the various clock domains
using separate module and then have strategies to deploy the synchronizers
in the data and control paths.

20.5 H.264. Encoder IP Design and Development 311

(d) If low-power-aware architecture is the requirement, then try to use the low-
power strategies during the RTL design level.

(e) Top-level design and integration should use the readable naming conventions
and should have the interface at the sequential boundaries for the better
timing, and this care should be taken by every RTL design team member.

2. RTL Verification: Following we can think during the RTL verification phase of
H.264 encoder.

(a) Have the verification plan in place for the block- and top-level verification
(b) Have the automatic testbenches at the module level and top level; with the

goals to have the better coverage
(c) Try to have the test cases and test vectors for the block-level functionality

and top-level functionality
(d) Have the top-level verification strategies and architecture to find the issues

in the RTL design and to notify the RTL team.

20.5.3 Strategies During Synthesis and DFT

Use the following strategies during the logic synthesis of the H.264 encoder

1. Bottom-up compilation: Use the bottom-up compilation strategies.
2. Block-level synthesis: Perform the synthesis for each functional block using the

block-level constraints.
3. Top-level synthesis: Perform the top-level synthesis using top-level constraints.
4. Performance improvement: Improve the area and speed performance for the

design using the various techniques discussed in Chaps. 11–13.
5. DFT and scan insertion: Have the strategy to use the full scan or partial scan to

detect the faults in the design.

(a) Use the DFT techniques to find the stuck at fault and fault coverage.
(b) Try to find the test violation and report to the team.

20.5.4 Strategies During Pre-layout STA

Use the following strategies during pre-layout STA.

1. Use the STA tool with goal to report all violations in the design.
2. Fix the setup violations in the designs using techniques specified in Chap. 15.
3. Use the various performance improvement techniques to meet the timing goals.

312 20 Case Study: IP Design and Development

20.5.5 Strategies During Physical Design

Use the following strategies during physical design.

1. Use the floor planner with the floor plan manager to exchange the information
between the front-end and back-end tools.

2. Have the placement and routing with the goal to optimize the design to yield the
clean timing.

3. Fix up the timing violations setup and hold for the timing paths where the
violations are reported.

4. Use the LVS and DRC checks to report the violations and have strategies to fix
them.

20.6 ULSI and ASIC Design

If we consider the toddy’s world, the design demands the lot of intelligence in
the chips. The ASICs which may be used in the aerospace, communication, video
processing and general processing applications may need to have the self and debug
test mechanisms and should have the intelligence to using the AI-based designs.

As the technology is advancing and the shrinkage is demand, there is evolution of
the processes used during the manufacturing of the ASICs. If we observe carefully
the growing consumer market the demand of use of AI and ML-based designs to
embed the intelligence in the chips.

The Very Large Scale Integration which we treat as the design with the billions of
the logic gates and such kind of ASICs are manufactured by foundries to have better
reliability, durability. The advances of the technology in the past one decade where
the process node has shrunk enough below 10 nm have imposed lot of challenges in
the overall design and manufacturing processes. Few of these are due to the

1. Low voltage levels.
2. Noise impact.
3. Interconnect delays.
4. Foundry laid rules.

So to cope upwith the requirements, the design andmanufacturing processes have
the evolution and the ULSI-based designs is the need of the market. ULSI is Ultra
Large Scale Integration and used to have the density of the few billion logic gates
which operate at the lower voltage levels might be in the range of 0.8 Volts to the 1.5
Volts.

20.6 ULSI and ASIC Design 313

Due to need of the lower core and logic power, the design has various issues
during the initial architecture finalization to achieve the timing and performance.

For this kind of the ASIC, the noise is one of the biggest bottlenecks and the
major issues during the place and route while meeting the design and optimiza-
tion constraints. The actual wire delays and the optimization of the design for the
performance is one of the challenging tasks for the billion gate ASICs.

Even the internal data integrity and synchronization of the multiple clock domain
complex modules is the major challenge in the design and to have the clean layout.

With the shrinking process node, the evolving algorithms and processes and the
EDA-based environment availability is another challenge as for the ULSI-based
designs the NRE cost for the design, and test is very high and even the EDA industry
is going through the evolution of the algorithms which are useful to have the ASIC-
based designs at 2 or 3 nm.

This demands the intelligence which needs to be embedded in the design, and
many chip companies are working in the area of AI- and ML-based designs.

20.7 Chapter Summary

Following are important points to conclude the chapter.

1. During the design of the complex ASICs for quick turnaround, the IPs can be
reused.

2. Functional and timing-proven IPs are used during the design and prototype.

Appendix A

Verilog is case-sensitive, and the important Verilog 2005 constructs are listed below:

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0

315

316 Appendix A

1. module declaration

///
module comb_design (input wire a_in, b_in, output wire
y1_out,y2_out, output reg [7:0] y3_out);

//Concurrent and sequen al statements and assignments

endmodule
///

2. Continous assignment (neither blocking nor non-blocking)

assign y1_out = a_in ^ b_in;// net type is wire

3. always@* // Combinational procedural blocks

///

always @*
begin
// blocking assignments or sequen al constructs and net type reg
end
///

4. always@ (posedge clk) // sequential procedural block
sensitive to positive edge of clock

///

Appendix A 317

always @(posedge clk)
begin
//synchronous reset and assignments
//non-blocking assignments or sequen al constructs (net type reg)
end
///

5. always@ (posedge clk or negedge reset_n) // sequential
procedural block sensitive to positive edge of clock

///

always @(posedge clk or negedge reset_n)
begin
//asynchronous reset and assignments
//non-blocking assignments or sequen al constructs (net type reg)
end
///

6. always@ (negedge clk) // sequential procedural block
sensitive to negative edge of the clock

///

always @(negedge clk)
begin
// non-blocking assignments or sequen al constructs and net type reg
end
///

7. Multiple blocking (=) assignments in the procedural block

///

318 Appendix A

 tmp_1 = data_in;
 tmp_2 = tmp_1;

 tmp_3 = tmp_2;
 q_out = tmp_3;
 end

///

8. Multiple non-blocking (<=) assignments in the procedural
block

///

begin
 tmp_1 <= data_in;
 tmp_2 <= tmp_1;

 tmp_3 <= tmp_2;
 q_out <= tmp_3;
 end

///

9. Sequential construct if –else within always procedural block

///

if(condi on)
//assignment or expression

else
//assignment or expression
end

///

10. Sequential construct case--endcase within always
procedural block

begin

Appendix A 319

///

case (sel_in)

// condi ons and expressions

endcase
///

11. Sequential construct casex--endcase within always
procedural block

///

casex (sel_in)

// condi ons and expressions

endcase
///

12. Sequential construct casez--endcase within always
procedural block

///
casez (sel_in)

casex (sel_in)

// condi ons and expressions

endcase
///

13. Procedural block initial

///

320 Appendix A

initial
begin
 //assignments with non-synthesizable intent
end

///

For the other constructs, please refer Verilog 2005 language reference manual!

Appendix B

The important Synopsys Design Compiler (DC) commands useful during synthesis
are listed in the table below

DC command Constraint type Description of command

set_max_transition DRC Used to define the largest transition
time

set_max_fanout DRC Used to set the largest fanout for the
design

set_max_capacitance DRC Used to set the maximum capacitance
allowed for the design

set_min_capacitance DRC Used to set the minimum capacitance
allowed for the design

set_operating_conditions Optimization constraints Used to set the PVT conditions as it
affects on timing

set_load Optimization constraints Used to model load on output port

set_clock_uncertainty Optimization constraints Used to define the estimated network
skew

set_clock_latency Optimization constraints Used to define the estimated source
and network delays

set_clock_transition Optimization constraints Used to define the estimated input skew

set_max_dynamic_power Power constraints Used to set the maximum dynamic
power

set_max_leakage_power Power constraints Used to set the maximum leakage
power

set_max_total_power Power constraints Used to set the maximum total power

set_dont_touch Optimization constraints It is used to prevent the optimization of
mapped gates

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0

321

Bibliography

https://www.physicaldesign4u.com/2019/12/floorplanning-floor-planning-is-art-of.html
http://vlsibyjim.blogspot.com/2015/03/power-planning.html
https://anysilicon.com/ic-layout-an-overview/
www.synopsys.com. Power compiler reference manual. Synopsys Inc
www.ieee.org. IEEE1801 low power design standard
www.synopsys.com. Guidelines and practices for successful logic synthesis version 1998.08, Aug
1998

www.synopsys.com. Synopsys timing constraints and optimization user guide, version D-2010.03
www.springer.com. Digital logic design using verilog (https://www.springer.com/in/book/978813
2227892)

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0

323

Index

A
Acknowledgement or notification, 105
Active power, 123
ADC and DAC, 308
Always, 119
Analyze, 145
Architecture, 129, 131, 260, 266
Architecture of the processor, 260
Architecture tweaks, 259
Area, 9, 120, 129, 139
Area constraints, 252
Area estimation, 246
Area optimization, 267
Arithmetic operators, 283
Arithmetic resource, 29
Arithmetic unit and Logic Unit (ALU), 260,

264
ASIC designs, 236, 259, 271
ASIC synthesis, 19
ASIC testing, 199
Assign, 29
Asynchronous, 49
Asynchronous designs, 11, 70, 85
Asynchronous reset, 60
Asynchronous sequential boundaries, 237
Attribute, 188
Automatic partitioning, 307
Automatic test benches, 266

B
Back annotated data, 255
Back-end, 2
Backend flow, 296
Best case, 93
BIST, 308
32-bit processor, 260

Blockages, 248
Block and top level synthesis, 132
Blocking assignments, 50
Block level and top level verification plan,

266
Block level constraints, 139, 141
Block level designs, 266
Block level synthesis, 268
Block level timing, 237
Block RAM, 272, 279
Built in Self-Test, 20

C
Cadence RTL compiler, 154
Capacitance, 139, 195
Capacitive load, 252
Case, 119
Cell library, 182
Cell Row utilization, 248
Channeled gate array, 4
Channel- less gate array, 5
Characterize, 208
Check_design, 145, 150
Check_timing, 150
Chip area, 249
Chip level constraints, 245, 259
Chip level utilization, 246
Clock, 232
Clock buffer, 121
Clock balancing, 121
Clock divider, 198
Clock domains, 134
Clock gating, 11, 117, 121, 122, 199
Clock gating cells, 82
Clock groups, 139
Clocking boundary, 111

© Springer Nature Singapore Pte Ltd. 2021
V. Taraate, ASIC Design and Synthesis,
https://doi.org/10.1007/978-981-33-4642-0

325

326 Index

Clocking strategies, 308
Clock latency, 81, 141, 232
Clock managers, 272, 279
Clock multiplexing, 199
Clock network latency, 198
Clock optimization, 251
Clock sizing, 251
Clock skew, 10, 75, 245
Clock tree, 89, 121, 122
Clock tree synthesis, 22, 75, 140, 246, 251
CMOS, 114
CMOS devices, 1
Combinational loop, 224
Common resources, 30, 268
Compile-characterize, 184
Compile incremental, 256, 269
Compile_map high, 207
Compiler, 209, 214
Configurable Logic Block (CLB), 272
Configuration and test management, 136
Congestion, 245, 249
Constraints, 25, 154
Constraint violation, 268
Continuous assignments, 29
Control and data path synchronizers, 265
Controllability and observability, 219
Control signals, 103
Corner cases, 266
Create_clock, 145
Critical path, 269
Critical path cells, 256
Critical timing paths, 205
CTS, 251

D
Data and control path, 264
Data and control path optimization, 97
Data and control signals, 97
Database, 182
Data integrity, 85, 98, 259
Data integrity checks, 100
Data path, 123
Data path optimization, 30
Data path synchronizer, 110
DDR3 memory controller, 307
Dead zone code, 167
Debug, 185
Debug and the test phase, 308
Decoders, 40
Decrypted, 304
Default, 119
Design compiler, 179, 301

Design constraints, 83
Design environment, 184
Design for Testability (DFT), 19, 217
Design object, 183
Design partitioning, 16, 187, 190
Design performance., 268
Design planning, 15
DesignRuleCheck (DRC), 22, 139, 246, 255
Design Rule Constraints (DRC), 83, 139,

182
Design rules, 150, 184
Designs with clock enables, 279
Design testability, 218
DesignWare, 181
Detailed routing, 255
DFT friendly architecture, 219
DFT friendly RTL, 219
dont_touch, 202
DRC violations, 83, 212
Drive strength, 184
DSP blocks, 272, 279
50% duty cycle, 146
Dynamic, 229
Dynamic power, 82, 114
Dynamic voltage and frequency scaling, 123

E
EDA tool, 19, 123, 182, 308
Edge sensitive, 58
Efforts levels, 149
Elaborate, 145
Electrical characteristics, 129
Electrical defect, 218
Empty and full flag, 110
Encoder, 43
Encrypted key, 304
Encrypted source code, 304
End point, 90, 230
Equality operator, 287
Equivalence checking, 16

F
False path, 199, 238, 242, 269
Fanout, 139, 195
Faults, 182
FIFO, 98
FIFO memory buffers, 101, 108
Finite State Machine (FSM), 209, 214
Flattened, 202
Flip-flops, 58
Flip-flop timing parameters, 87
Floating point engine, 261

Index 327

Floating point numbers, 135, 260
Floating point operations, 259
Floating point unit, 135, 191
Floor plan, 248
Floor planning, 20, 245
Floor plan strategies, 259
Floorplan utilization, 246
Foundry, 2
Foundry rules, 246
Four timing paths, 230
FPGA, 271
FPGA design flow, 22
FPGA fabric, 275
FPGA IO, 300
FPGA pad, 301
FPGA resources, 299, 308
FPGA synthesis, 45, 297
Front-end (logic) design, 2
FSM control, 109
FSM controllers, 265, 279
Full custom, 2
Full scan, 220
Functional design, 6
Functional specification, 260

G
Gate array, 2
Gated clocks, 225, 279, 299
Gate level design, 7
Gate level netlist, 154, 185, 245
GDSII, 22, 245, 259
General purpose processor, 261
Generated clocks, 198, 225
Global and detail placement, 252
Global and detail routing, 253
Global routing, 253
Glue logic, 186, 190, 214
Gray codes, 31
Gray counter, 279
Gray encoding, 111
Group, 187, 203
group_path, 206
Grouping, 204
GTECH, 303

H
Handshaking, 108
Hard IPs, 303
Hardware and software partitioning, 132
HDL, 7, 124
Hierarchical, 202

Hierarchical designs, 184, 267
High impedance, 308
High Level Design (HLD), 9
High speed interfaces, 134–136, 191, 260,

261
Hold slack, 80
Hold time, 74, 230
Hold time fix, 251
Hold time violations, 102
Hold uncertainty, 141, 232
Hold violation, 242
H Tree, 251

I
IC compiler, 248
IEEE 1801, 125
if-else, 119
Incremental compilation, 204
Incremental flow, 296
Incremental route, 255
Incremental synthesis, 295
In Place Optimization (IPO), 255, 256, 269,

270
Input and output delay, 147
Input delay, 141, 232
Input to output path, 91, 232
Input to reg path, 90, 231
Internal memory, 135
Interrupt controller, 262
IO and communication blocks, 262
IO blocks, 277
IOBs, 272
IO cells, 249, 301
IO interfaces, 134, 260
IO pad, 300, 301
IO pad instance, 301
IP cores, 81
Isolation, 125
Isolation cells, 114, 124

J
JTAG, 20

L
Latches, 55, 225
Late arrival, 268
Late arrival signals, 239
Latency, 81, 109, 268
Layout, 256, 270
Layout Versus Schematic check (LVS), 22,

245, 246

328 Index

Leakage, 82
Leakage current, 114
Level sensitive, 55
Level shifters, 114, 125
Level to pulse, 104
Libraries, 184
Library models, 116
Link library, 182
Load, 184
Logical clusters, 269
Logical flattening, 205, 214
Logic congestion, 252
Logic design, 6, 16
Logic duplication, 269
Logic equivalence, 20
Logic functionality mapping, 273
Logic synthesis, 19, 202
Longer runtime, 192
Loss of correlation, 102
Low Level Design (LLD), 9
Low power, 85
Low power cells, 113
Low power designs, 113
Low power management, 114
LUTs, 275

M
Macros, 81, 131, 249
Map_effort, 204
Master slave flip-flops, 119
max_capacitance, 197
max_fanout, 196
Maximum clock frequency, 86
Maximum frequency, 245
Maximum operating frequency, 91
Max Transition, 196
MCP, The, 106
Memory structure, 300
Meta_data, 75
Metastability, 75
Micro-architecture, 16, 131, 260, 263
Minimum bus width, 119
Min or max, 147
Mixed connectivity, 308
Moore’s law, 1
Multicycle paths, 100, 111, 214, 242, 269
Multiple clock domain designs, 97, 132
Multiple clock domains, 259
Multiple clocks, 75, 98, 129, 190
Multiple power domains, 114
Multiplexers, 35, 117
Multipliers, 269, 272, 279

Multistage level synchronizer, 106
Mux based scan, 221
Mux-based scan cell, 223
MUX synchronizer, 106

N
Negative clock skew, 76, 88
Nets, 189
Network latency, 85
Noise and derate of the timing, 245
Non_Blocking Assignments, 50
Non-converging, 104
Non-critical sub paths, 256
Non-synthesizable, 281

O
Operand isolations, 122
Optimization, 83, 237, 269, 295
Optimization constraints, 83, 139, 182
Optimize delays, 255
Optimized netlist, 182
Output delay, 141, 232

P
P&R tool, 255
Pad library, 301
P and R, 296
P and R runtime, 296
P and R tool, 295
Parallelism, 238
Parallel logic, 239
Parasitic, 245
Partial scan, 220
Partitioning, 265
Partitioning analog and digital domains, 132
Partitioning for low power aware architec-

tures, 132
Partitioning tools, 307
Path groups, 211
Performance improvement, 268
Phase difference, 98
Physical clustering, 256, 269
Physical defects, 218
Physical design, 2, 16, 20, 113, 131
Physical design flow, 245
Pin assignment, 249
Pipelined architecture, 268
Pipelining, 19, 129, 266
Place_opt, 252
Place and rout, 273
Placement algorithm, 252

Index 329

Placement and routing, 22, 289
Placement utilization, 251
PLL, 65, 198
Pointers and counters, 262
Port interfaces, 187
Ports, 189
Positive clock skew, 76
Power, 10
Power compiler, 117
Power domains, 125
Power gating, 123
Power management, 121
Power optimization, 113
Power planning, 20, 113, 143, 246
Power rails, 125, 249
Power requirements, 129
Power rings, 249
Power sequencer, 114
Power sequencing, power shutdowns, 113
Power Shut-Off (PSO), 123
Power state tables, 125
Power stripes, 249
Power switches, 125
Pre-layout STA, 248, 268
Pre-synthesized netlist, 303
Priorities, 188, 195
Priority encoders, 43
Priority encoding, 239
Process, 93
Processor configuration management, 259
Processor cores, 259
Processor engine, 135, 261
Processor IPs, 259
Process, temperature, voltage, 184
Programmable ASIC, 271
Propagation delay of flip-flop, 74
Prototyping flow, 295
Pulse stretcher, 104
Pulse synchronizers, 106

Q
Quality of Report (QOR), 251

R
RC time constant, 196
Read, 145
Re-compile, 269
References, 189
Register balancing, 209, 241, 269
Registered inputs and registered outputs, 264
Register to register path, 88

Register Transfer Level (RTL), 186, 301
Reg to output path, 90, 231
Reg to reg path, 91, 268, 231
Relational operator, 284
Re-optimization, 255
Reoptimize design, 255, 269
Report_constraints, 212
Report_constraints_all, 212
Report timing, 206, 235, 251
Reset, 60
Reset network, 60
Reset tree, 60
Resource sharing, 19, 266
Retention, 125
Retention cells, 114
Ring type connectivity, 308
Route_opt, 255
Routing, 249, 259
Routing congestion, 20
Routing delays, 245
Routing issues, 245
RTL design, 9, 18, 131
RTL design and verification, 15
RTL source code of IP, 303
RTL to GDSII, 259
RTL tweaks, 237
RTL verification, 18

S
Scan based DFT, 20
Scan chain, 222
Scan insertions, 182
Scan methods, 220
Script, 267
SDC command, 144
SDF based verification, 289
Search_path, 179
Semi custom, 2
Semi-custom ASIC design, 13
Serial IO, 134, 260
set_clock_latency, 233
set_dont_touch, 193, 201
set_dont_use, 201
set_flatten, 203
set_input_delay, 234
set_output_delay, 234
set_prefer, 202
Set and reset, 121
set-don’t_touch_network, 121
Setup and hold check, 214
Setup slack, 80, 86, 269
Setup time, 74

330 Index

Setup time violation, 268, 269
Setup uncertainty, 141, 232
Setup violations, 205, 238
Shift register, 219
Short circuit power, 115
Signoff STA, 22, 246, 273, 289
Skew, 85, 146
Slack, 11, 205
Slice registers, 275
SOC architecture, 308
SOC speed, 295
Specification, 13
Speed, 10, 81, 129, 139, 229
Speed improvement, 269
SRPG, 124
STA, 20, 229, 236, 246
Standard cells, 142, 249, 283
Standard Delay Format (SDF), 273
Star connectivity, 308
Start point, 90, 230
State machines, 190
Static, 229
Static timing analysis, 20
Strategies, 269
Stray capacitance, 113, 114
Structured ASICs, 6
Structuring, 203
Stuck at fault, 218
Switches, 125
Switching activity, 115
Switch level design, 8
Symbol_library, 179
Synchronizers, 60, 97, 103, 190, 279
Synchronous, 49
Synchronous design, 11, 68
Synchronous reset, 60
Synopsys, 118
Synopsys_dc.setup, 179
Synopsys DC, 19, 182, 196, 301
Synopsys design compiler, 19, 154
Synopsys PT, 182
Synopsys PT (PT shell), 20
Synthesis, 27, 131, 295
Synthesis/DFT, 9
Synthesizable model, 301

T
Tapeout, 246
Target library, 182
Tcl based script, 251

Tcl script, 238
Technology library, 15, 19, 181, 196
Technology node, 129, 142
Temperature, 93
Testbench, 281
Test cases, 266
Test compiler, 223
Test mode, 221
Test pattern generation, 218
Test vectors, 223
Timing analysis, 184
Timing exceptions, 269
Timing optimization, The, 188
Timing paths, 89, 229
Timing report, 298
Timing sequence, 103
Timing summary, 211
Timing violation, 230
Toggle synchronizer, 106
Top-down or bottom-up, 183
Top level, 190
Top level boundary, 301
Top level constraints, 141
Top level design, 266
Top-level synthesis, 140
Transition, 139, 195
Trimming, 143

U
Unconnected ports, 143
Unconstrained path, 232
Ungroup, 203
Unified Power Format (UPF), 113, 124, 143
Uniform clock skew, 251

V
Vendor specific power formats, 124
Violations, 230
Virtual clock, 146
Voltage, 93
Voltage level, 125

W
Weight factor, 205, 215
Wire load model, 255
Worst case, 93
Write command, 149

	Preface
	Acknowledgements
	Contents
	About the Author
	1 Introduction
	1.1 ASIC Design
	1.2 Types of ASIC
	1.3 Abstraction Levels
	1.4 Design Examples
	1.5 What We Should Know?
	1.6 Important Terms Used Throughout Design Cycle
	1.7 Chapter Summary

	2 ASIC Design Flow
	2.1 ASIC Design Flow
	2.1.1 Logic Design
	2.1.2 Physical Design

	2.2 FPGA Design Flow
	2.3 Examples and Thought Process
	2.4 Design Challenges
	2.5 Chapter Summary

	3 Let Us Build Design Foundation
	3.1 Combinational Design Elements
	3.2 Logic Understanding and Use of Construct
	3.3 Arithmetic Resources and Area
	3.4 Code Converter
	3.4.1 Binary to Gray Code Converter
	3.4.2 Gray to Binary Code Converter

	3.5 Multiplexers
	3.6 Cascading Stages of MUX Using Instantiation
	3.7 Decoders
	3.8 Encoders
	3.9 Priority Encoders
	3.10 Strategies During ASIC Design
	3.11 Exercises
	3.12 Chapter Summary

	4 Sequential Design Concepts
	4.1 Sequential Design Elements
	4.2 Let Us Understand Blocking Versus Non-blocking Assignments
	4.2.1 Blocking Assignments
	4.2.2 Reordering of the Blocking Assignments
	4.2.3 Non-blocking Assignments
	4.2.4 Reordering of the Non-blocking Assignments

	4.3 Latch-Based Designs
	4.4 Flip-Flop-Based Designs
	4.5 Reset Strategies
	4.5.1 Asynchronous Reset
	4.5.2 Synchronous Reset

	4.6 Frequency Divider
	4.7 Synchronous Design
	4.8 Asynchronous Design
	4.9 RTL Design and Verification for Complex Designs
	4.10 Exercises
	4.11 Chapter Summary

	5 Important Design Considerations
	5.1 Timing Parameters
	5.2 Metastability
	5.3 Clock Skew
	5.3.1 Positive Clock Skew
	5.3.2 Negative Clock Skew

	5.4 Slack
	5.4.1 Setup Slack
	5.4.2 Hold Slack

	5.5 Clock Latency
	5.6 Area for the Design
	5.7 Speed Requirements
	5.8 Power Requirements
	5.9 What Are Design Constraints?
	5.10 Exercises
	5.11 Chapter Summary

	6 Important Considerations for ASIC Designs
	6.1 Synchronous Design and Considerations
	6.2 Positive Clock Skew and Impact on Speed
	6.3 Negative Clock Skew and Impact on the Speed
	6.4 Clock and Network Latency
	6.5 Timing Paths in the Design
	6.5.1 Input to Reg Path
	6.5.2 Reg to Output Path
	6.5.3 Reg to Reg Path
	6.5.4 Input to Output Path

	6.6 Frequency Calculations
	6.7 What Is On-Chip Variations
	6.8 Exercises
	6.9 Chapter Summary

	7 Multiple Clock Domain Designs
	7.1 General Strategies for Multiple Clock Domain Designs
	7.2 What Are Issues in the Multiple Clock Domain Design
	7.3 Architecture Design Strategies
	7.4 Control Path and Synchronization
	7.4.1 Level or Multiflop Synchronizer
	7.4.2 Pulse Synchronizers
	7.4.3 MUX Synchronizer

	7.5 Challenges in the Multiple Bit Data Transfer
	7.6 Data Path Synchronizers
	7.6.1 Handshaking Mechanism
	7.6.2 FIFO Synchronizer
	7.6.3 Gray Encoding

	7.7 Summary and Future Discussions

	8 Low Power Design Considerations
	8.1 Introduction to Low Power Design
	8.2 Sources of Power
	8.3 Power Optimization During the RTL Design
	8.4 Switching and Leakage Power Reduction Techniques
	8.4.1 Clock Gating and Clock Tree Optimizations
	8.4.2 Operand Isolations
	8.4.3 Multiple Vth
	8.4.4 Multiple Supply Voltages (MSV)
	8.4.5 Dynamic Voltage and Frequency Scaling (DVSF)
	8.4.6 Power Gating (Power Shut Off)
	8.4.7 Isolation Logic
	8.4.8 State Retention

	8.5 Low-Power Design Architecture and Use of UPF
	8.6 Chapter Summary

	9 Architecture and Micro-architecture Design
	9.1 Architecture Design
	9.2 Micro-architecture Design
	9.3 Use of Document During Various Design Phases
	9.4 Design Partitioning
	9.5 Multiple Clock Domains and Clock Grouping
	9.6 Architecture Tweaking and Performance Improvement
	9.7 Strategies for the Micro-architecture Design of Processor
	9.8 Chapter Summary

	10 Design Constraints and SDC Commands
	10.1 Important Design Concepts
	10.1.1 Clock Tree
	10.1.2 Reset Tree
	10.1.3 Clock and Reset Strategies
	10.1.4 What Impacts on Design Performance?

	10.2 How to Interpret the Constraints
	10.2.1 Area Constraints
	10.2.2 Speed Constraints
	10.2.3 Power Constraints

	10.3 Issues in the Design
	10.4 Important SDC Commands Used During Synthesis
	10.4.1 Synopsys DC Commands
	10.4.2 Checking of the Design
	10.4.3 Clock Definitions
	10.4.4 Skew Definition
	10.4.5 Defining Input and Output Delay
	10.4.6 Specifying the Minimum (min) and Maximum (max) Delay
	10.4.7 Design Synthesis
	10.4.8 Save the Design

	10.5 Constraint Validation
	10.6 Commands for the DRC, Power, and Optimization
	10.7 Chapter Summary

	11 Design Synthesis and Optimization Using RTL Tweaks
	11.1 ASIC Synthesis
	11.2 Synthesis Guidelines
	11.3 FSM Design and Synthesis
	11.4 Strategies for the Complex FSM Controllers
	11.5 How RTL Tweaks Are Useful During Synthesis?
	11.6 Synthesis Optimization Techniques Using RTL Tweaks
	11.6.1 Resource Allocation
	11.6.2 Dead Zone Elimination
	11.6.3 Use of Parentheses
	11.6.4 Grouping the Terms

	11.7 FPGA Synthesis
	11.8 Chapter Summary

	12 Synthesis and Optimization Techniques
	12.1 Introduction
	12.2 Synthesis Using Design Compiler
	12.3 Synthesis and Optimization Flow
	12.4 Area Optimization Techniques
	12.4.1 Avoid Use of Combinational Logic as Individual Block
	12.4.2 Avoid Use of Glue Logic Between Two Modules
	12.4.3 Use of setmaxarea Attribute
	12.4.4 Area Report

	12.5 Design Partitioning and Structuring
	12.6 Compilation Strategy
	12.6.1 Top-Down Compilation
	12.6.2 Bottom-Up Compilation

	12.7 Chapter Summary

	13 Design Optimization and Scenarios
	13.1 Design Rule Constraints (DRC)
	13.1.1 maxfanout
	13.1.2 maxtransition
	13.1.3 maxcapacitance

	13.2 Clock Definitions and Latency
	13.2.1 Clock Network Latency
	13.2.2 Generated Clock
	13.2.3 Clock Muxing and False Paths
	13.2.4 Clock Gating

	13.3 Commands Useful During Design Synthesis and Optimization
	13.3.1 setdontuse
	13.3.2 setdonttouch
	13.3.3 setprefer
	13.3.4 Command for the Design Flattening
	13.3.5 Commands Used for Structuring
	13.3.6 Group and Ungroup Commands

	13.4 Timing Optimization and Performance Improvement
	13.4.1 Design Compilation with ‘mapeffort high’
	13.4.2 Logical Flattening
	13.4.3 Use of grouppath Command
	13.4.4 Submodule Characterizing
	13.4.5 Register Balancing

	13.5 FSM Optimization
	13.6 Fixing Hold Violations
	13.7 Report Command
	13.7.1 reportqor
	13.7.2 reportconstraints
	13.7.3 reportcontraintsall

	13.8 Multicycle Paths
	13.9 Chapter Summary

	14 Design for Testability
	14.1 What Is Need of DFT?
	14.2 Testing for Faults in the Design
	14.3 Testing
	14.4 Strategies Used During the DFT
	14.5 Scan Methods
	14.5.1 Mux-Based Scan
	14.5.2 Boundary Scan
	14.5.3 Built-In Self-Test (BIST)

	14.6 Scan Insertion
	14.7 Challenges During the DFT
	14.8 DFT Flow and Test Compiler Commands
	14.9 The Scan Design Rules to Avoid DRC Violations
	14.10 Chapter Summary

	15 Timing Analysis
	15.1 Introduction
	15.2 What Are Timing Paths for Design
	15.2.1 Input to Reg Path
	15.2.2 Reg to Output Path
	15.2.3 Reg to Reg Path
	15.2.4 Input to Output Path

	15.3 Let Us Specify the Timing Goals
	15.4 Timing Reports
	15.5 Strategies to Fix Timing Violations
	15.5.1 Fixing Setup Violations in the Design
	15.5.2 Hold Violation Fix
	15.5.3 Timing Exceptions

	15.6 Chapter Summary

	16 Physical Design
	16.1 Physical Design Flow
	16.2 Foundation and Important Terms
	16.3 Floor Planning and Power Planning
	16.4 Power Planning
	16.5 Clock Tree Synthesis
	16.6 Place and Route
	16.7 Routing
	16.8 Back Annotation
	16.9 Signoff STA and Layout
	16.10 Chapter Summary
	Reference

	17 Case Study: Processor ASIC Implementation
	17.1 Functional Understanding
	17.2 Strategies During Architecture Design
	17.3 Micro-architecture Strategies
	17.4 Strategies During RTL Design and Verification
	17.5 The Sample Script Used During Synthesis
	17.6 Synthesis Issues and Fixes
	17.7 Pre-layout STA Issues
	17.8 Physical Design Issues
	17.9 Chapter Summary

	18 Programmable ASIC
	18.1 Programmable ASIC
	18.2 Design Flow
	18.3 Modern FPGA Fabric and Elements
	18.4 RTL Design and Verification
	18.5 FPGA Synthesis
	18.5.1 Arithmetic Operators and Synthesis
	18.5.2 Relational Operator and Synthesis
	18.5.3 Equality Operator Synthesis

	18.6 Design at Fabric Level
	18.7 Chapter Summary

	19 Prototyping Design
	19.1 FPGAs for Prototyping
	19.2 Synthesis Strategies During Prototyping
	19.2.1 Fast Synthesis for Initial Resource Estimation
	19.2.2 Incremental Synthesis

	19.3 Constraints During FPGA Synthesis
	19.4 Important Considerations and Tweaks
	19.5 IO Pad Synthesis for FPGA
	19.6 Prototyping Tools
	19.7 Chapter Summary

	20 Case Study: IP Design and Development
	20.1 IP Design and Development
	20.2 What We Consider During the IP Selection
	20.3 Strategies Useful During the IP Design
	20.4 Prototyping Using Multiple FPGA
	20.5 H.264. Encoder IP Design and Development
	20.5.1 Features and Micro-architecture Design Strategies
	20.5.2 Strategies During RTL Design and Verification
	20.5.3 Strategies During Synthesis and DFT
	20.5.4 Strategies During Pre-layout STA
	20.5.5 Strategies During Physical Design

	20.6 ULSI and ASIC Design
	20.7 Chapter Summary

	 Appendix A
	 Appendix B
	Bibliography
	Index

